
Maintaining Canonical Form After Edge Deletion

Eric Fritz
University of Wisconsin-Milwaukee

fritz@uwm.edu

Abstract
Waddle is a research intermediate-form optimizer that strictly
maintains a canonical form similar to the loop-simplify form used
in LLVM. The properties of this canonical form simplify movement
of instructions to the edges of loops and often localize the effect
on variables to the loop in which they are defined. The guarantee
of canonical form preservation allows program transformations to
rely on the presence of certain program properties without a nec-
essary sanity-check or recalculation pre-step and does not impose
an order of transformations in which reconstruction passes must be
inserted.

In this paper, we present a form-preserving edge deletion oper-
ation, in which a provably unreachable branch between two basic
blocks is removed from the control flow graph. Additionally, we
show a distinct application of the block ejection operation, a core
procedure used for loop body reconstruction, as utilized in a func-
tion inlining transformation.

1. Introduction
Waddle [8] is a proof-of-concept methodology for compiler con-
struction and reference implementation in Scala that strictly main-
tains a canonical form in its intermediate representation. The
canonical form is similar to the result of LLVM’s loop-simplify
pass. The properties of this form simplifies program transforma-
tions by allowing them to rely on the presence of certain loop
properties. These properties often help contain the effects of a
transformation to the loop where the transformation occurs. Every
transformation over the IR is expected to maintain the properties
of canonical form in addition to keeping auxiliary data structures
holding domination information and loop metadata up-to-date.

This architecture differs from optimizers where transformations
must canonicalize the program themselves before doing their real
work as well as optimizers where transformations must declare
their expectation of such canonical properties and expect the caller
to ensure these properties exist before the transformation occurs.
LLVM, for example, takes the second alternative approach and
often requires re-calculating properties or auxiliary structures from
scratch. This particular approach has the benefit of keeping the code
of the transformation relevant to the transformation itself. As its
contract ensures that its input has the required properties for the

Submitted to ICOOOLPS, 2018.

transformation, the transformation does not require a pre-step to
canonicalize its input. Assuming that all transformations are written
in the same manner, no transformation is required to maintain any
properties of the input for a subsequent transformation.

However, this approach presents an obvious inefficiency. The
default pass pipeline in LLVM 6.0.0 contains 240 total transforma-
tions for level O2 and 256 transformation for level O3 (some of
which occur multiple times in the pipeline). Of these passes, 15 of
them reconstruct the dominator tree, 12 of them re-identify natural
loops and determine nesting depth, 7 of them reconstruct LCSSA
form, and 8 of them canonicalize loops. Canonicalization must oc-
cur before transformations such as induction variable canonicaliza-
tion, loop-invariant code motion, loop rotation, loop sinking, and
loop unrolling. The number of passes to maintain canonical form
and update required data structures account for nearly one-sixth of
the number of passes in this pipeline.

Some passes attempt to ‘repair’ structures such as the dominator
tree modified by the transformation when the changes to such
structures are sufficiently localized in order to reduce the number
of from-scratch calculations required down the line. Many of these
repairs are ad-hoc. A fair amount of research [1, 3, 6, 9, 12–
15, 17–19] spanning over two decades has gone into incrementally
maintaining the dominator tree of a control flow graph as flow paths
are modified. Waddle expands this idea of incremental maintenance
to the loop nesting forest, LCSSA form, and canonical form.

Intuitively, one would expect transformations in Waddle to be
littered with maintenance logic – but this is not the case. Waddle
uses the observation that not all modifications of the control flow
graph make sense when the goal is to preserve semantic equiva-
lence. For example, arbitrary edge additions between two existing
blocks are exceedingly rare. Such arbitrary modifications can also
complicate the identification of loop structures [10, 20, 21]. Oper-
ations that modify the control flow graph can then be categorized
into two groups: additive and subtractive. Every operation addition-
ally preserves canonical form of the control flow graph, thus their
composition with other operations and their inclusion in more com-
plex transformations provides this preservation benefit ‘for free’.
We briefly describe each group to give a more substantial view of
Waddle.

Additive operations are rather restricted and involve cloning an
existing single-entry portion of the program and linking it back
into the graph. These operations are useful for optimizations such
as function inlining which involves duplicating an entire function,
and loop switching and unrolling which involves duplicating a loop
body. When creating a duplicate subprogram, the domination and
loop structures associated with the original blocks are cloned as
well and inserted into the target function. Any branch to a block
that is not marked for cloning simply points to the original block.
Generally, linking this subprogram into the graph leaves only local
inconsistencies in domination and loop nesting structures where the
single-entry clone hooks into the original graph, and at each ‘exit’
block of the duplicate region. Thus, only a small handful of things

could be inconsistent with canonical form during these restricted
additive operations.

The subtractive operations simply delete a block or an edge
from the control flow graph or a function from the program. These
operations are most useful for the elimination of dead or inacces-
sible code and often present additional opportunities for optimiza-
tion. This paper presents the case of deleting a single (presumably
untaken) edge from the control flow graph, which falls squarely
into the latter category.

The remainder of this paper is organized as follows. Section 2
gives an overview of loop nesting forest structure and defines the
canonical form of a control flow graph. Section 3 discusses the
edge deletion operation. Section 4 discusses additional uses of the
edge deletion operation in transformations such as function inlin-
ing. Section 5 gives a brief evaluation of this technique comparing
incremental reconstruction and from-scratch re-computation of the
loop nesting forest over several programs. Section 6 discusses sim-
ilar work in the context of incrementally maintaining dominator
trees and Section 7 discusses relevant implementation details.

2. Loop Nesting Forests and Canonical Form
In this section, we define canonical form and provide incentive for
its use. First, we define a handful of prerequisite terms.

Natural Loops and the Loop Nesting Forest Consider the fol-
lowing program in which two sequences X and Y are searched
for a common element. We assume that both sequences are non-
decreasing so that iteration of the outer loop can be avoided when
the maximum element of X is less than the minimum element of
Y , and iterations of the inner loop can be avoided when x < y.
Program points referenced later are labeled in the right gutter.

if |X| 6= 0 ∧ |Y | 6= 0 ∧X|X|−1 ≥ Y0 then . s
outer:
for x ∈ X do . a

for y ∈ Y do . b
if x = y then . c

return true . d
else if x < y then . e

continue outer
end if

end for . f
end for

end if
return false . g

A (simplified) control flow graph for this program is illustrated
in Figure 1. This graph contains two natural loops defined by header
blocks a and b. Concisely, a natural loop is a maximal strongly
connected component in the graph where each block is dominated
by a single block called the header. Natural loops have a single
point of entry. Loops with multiple entry points may occur if the
control flow graph is irreducible [7, 10, 11, 21, 23], but we focus
our attention on the reducible case. The blocks which compose the
body of each loop are outlined.

Each loop has an additional set of properties derived from the
flow graph. The body is the maximal strongly connected set of
blocks dominated by the header. A latch is a predecessor of the
header contained in the loop body. A backedge is a directed edge
from a latch to the header. An exit is a block not contained in the
loop body with a predecessor contained in the loop body. A loop
may also have a preheader, a dominating predecessor of the header
from which all flow paths enter the loop.

If the body of a loop l is a proper subset of the body of loop
l′, then l is said to be nested in l′, and l is a child of l′ in the loop

nesting forest of the function. From this definition, it is clear that
the loop nesting forest forms a subset lattice.

In our example control flow graph, the outer loop consists of
blocks a, b, c, e, and f . It has two latches (e and f) and two exit
blocks (d and g). Block s is not a preheader of this loop as there is
a path from s which can avoid the loop. The inner loop consists of
blocks (b, c, and e). It has one latch (e) and three exits (a, d, and
f). Block a is a preheader of this loop.

The body set, exit set, and nesting relationship of a loop can
be easily re-computed on demand from the control flow graph.
However, it is very convenient to maintain these sets for efficient
containment and subset queries. In the following, when we repair
the body set of a loop, we are modifying the cached set to match
the definition.

LCSSA Form Loop-closed static single assignment form is an
extension of SSA form in which all uses of a register occur within
the loop where that register is defined. This has the effect that
transformations on a loop may remain local – transformations do
not need to exit the loop to otherwise modify uses of a register that
was somehow affected. Along with maintaining the dominator tree,
loop nesting forest, and canonical form, we also take care to ensure
graphs conform to LCSSA form after a transformation.

Canonical Form We say a reducible control flow graph is in
canonical form if every natural loop l in the graph conforms to the
following properties.

Property 2.1. Loop l contains only one latch.

Property 2.2. Loop l has a dedicated preheader.

Property 2.3. Every exit of loop l is dedicated to l.

In this context, dedication of a block b to a loop l requires that
if b is a predecessor of a block in l, then all successors of b are in
the body of l and, symmetrically, if b is a successor of a block in l,
then all predecessors of b must be in the body of l.

A graph can easily be canonicalized by a process called edge
set splitting [8]. Simply, a new no-instruction block is inserted
on a set of edges that share a common target block. We give
concrete examples of this process in the following. The result of
canonicalization of our example control flow graph is also given in
Figure 1.

Property 2.1 ensures that the loop can be uniquely defined by
its backedge. This can simplify loop iteration/trip count estimation,
as every subsequent pass through the loop must travel through the
same edge. Combined with the next property that guarantees a pre-
header, the loop header is guaranteed to have exactly two prede-
cessors. This simplifies the recalculation of loop body membership
after a change to the paths in the control flow graph (for continued
membership queries, it only needs to be shown that there is still a
path from the block to a latch). Our example program violates this
property as both block e and block f are latches of the outer loop.
This property can be repaired by replacing the reference to block
a from both blocks with a reference to an additional empty block
which then jumps unconditionally to block a. This fresh block be-
comes the unique latch of the outer loop.

Property 2.2 simplifies the correctness of hoisting a loop-
invariant instruction out of a loop body. To maintain (order-
semantic) similarity, an instruction hoisted from a loop must be
moved into every predecessor of the loop header, otherwise there
would exist a path in the control flow graph in which the loop
is entered and the instruction not evaluated. If there exists a path
that contains such a predecessor but avoids the loop, then eval-
uation of the instruction now occurs on a path that does not use
the value. This can negatively affect performance of the program
if the instruction is expensive or the loop is infrequently entered

s

a

b

g

c fd

e

(a) Unmodified control flow graph.

s

a

b

g

cd

e f

(b) Canonicalized control flow graph.

Figure 1: Control flow graph of the sample program.

h

l

h

p1

l

h

p1 p2

l

(a) Sample concrete violations.

h

p

l

h

p1

l

h

p1 p2

l

(b) Violations repaired by insertion of additional empty blocks.

Figure 2: Violations that prevent efficient instruction hoisting.

(i.e. the altered path is hot). If there are multiple such predecessors,
then the hoisted instruction is duplicated, increasing program size.
In general, duplication of instructions cause a second assignment
of a register to be introduced, violating static single assignment
form (which, if expected by future transformations, must be recon-
structed). Control flow graphs violating this property are illustrated
in Figure 2. Our example program violates this property twice:
neither s nor a are dedicated preheaders. In order to dedicate the
preheader of the outer loop, an additional empty block must be
inserted on the edge (s, a). Similarly, the preheader of the inner
loop can be dedicated by adding an additional empty block on edge
(a, b). These fresh blocks become the dedicated preheader of the
outer loop and inner loops, respectively.

Property 2.3 makes it possible to safely sink an instruction from
a loop body to the loop exits (e.g. saving a write to a memory ad-
dress unread within the loop until the loop termination). The same
instruction duplication issues present with instruction hoisting are
also present with instruction and effect sinking. Even more con-
cerning, an instruction sunk to an exit not dominated by the loop
header may be malformed as there may be missing data dependen-
cies that are present only on paths through the loop. Control flow
graphs violating this property are illustrated in Figure 3. It is im-
portant to note that an instruction sunk to multiple exits, even when
in canonical form, may need to be rewritten to preserve SSA form.
In our example program, block f is a dedicated exit of the inner
loop as all of its predecessors are in the body set of the inner loop.
Similarly, block d is a dedicated exit of both the inner and outer
loops. Block g, however, is not a dedicated exit of the outer loop
due to the edge (s, g). In order to dedicate the exit, an additional
empty block must be inserted on the edge (a, g). This fresh block
becomes a dedicated exit of the outer loop, and g is no longer an

exit of the outer loop. Later, we refer to this process of dedicating an
exit block e to a loop l by adding additional blocks in pseudocode
as dedicate exit(l, e).

When repairing a single violation of a canonical form prop-
erty, the number of total violations of the graph decreases by one.
In the example, creating a unique latch by splitting the edge set
{(e, a), (f, a)} creates a new block that is an undedicated exit of
the inner loop. However, block a is no longer an exit of the inner
loop. In this particular instance, the block which violates a property
had changed, but the number of total violations did not increase.

Each of these properties can be constructed fairly easily when
needed given a reducible control flow graph and an accurate loop
nesting forest. We maintain these properties at all times in order
to simplify the implementation and proofs of preserved semantics
of Waddle as well as the implementation of other transformations
that rely on canonical form properties. While preservation of these
properties is useful in its own right, these properties also simplify
the preservation of the loop nesting forest.

3. Edge Deletion
In this section, we describe the algorithm which repairs the loop
nesting structure and canonical form after the deletion of an edge
(a, b). We also describe block ejection, a subprocedure applied to
a loop l to do some of the heavy lifting of edge deletion. The later
procedure has additional applications outside of edge deletion, one
of which is discussed in Section 4.

3.1 Edge Deletion
A program may have a control flow edge which is provably dead
such that no set of inputs will cause the evaluation of the program

h

b

l e1

h

b

l

e1

e2

(a) Sample concrete violations.

h

b

l

e1

h

b

l

e1

e2

(b) Violations repaired by insertion of additional empty blocks.

Figure 3: Violations that prevent efficient instruction sinking.

a

b

c d

ef

(a) The original graph.

a

b

c

f

(b) Graph after removal of edge (b, d).

a

b

c

f

d

e

(c) Graph after removal of edge (e, f).

Figure 4: Examples of loop structure changes that can occur after an edge deletion.

to take that edge. Such edges often occur as a result of another
optimization pass such as function inlining or loop unswitching.
Removing this edge results in a reduction of program size, and may
allow additional opportunities for further optimization (reducing
the size of a function below the inline limit, removing dead side
effects from a loop for more precise analysis, etc). This section
details the restoration of canonical form after the deletion of such a
dead edge.

The deletion of an edge has what appears to be non-local
changes to the graph. Many nodes can become unreachable if all
paths to them contain the deleted edge. Entire loops may be de-
stroyed or un-nested from their parent. Figure 4 illustrates such
changes. Removing the edge (b, d) from the initial graph causes
the middle loop to lose its backedge, causing the set of blocks
composing the loop body to become disconnected. The innermost
and outermost loops survive, but the inner loop is no longer nested
within the outer loop as there is no path from a block in the inner
loop’s body to the outer loop’s latch. In this case, all paths were
destroyed, but in general unnesting occurs if there is no path to the
outer loop’s latch that does not exit the outer loop’s body. Remov-
ing the edge (e, f) from the initial graph forces blocks d and e to
be ejected from the inner loop into ancestor loops.

The deletion algorithm, shown below, can be organized into
three steps described in the following.

Step 1 (lines 1-4) A reference to block b from a terminating
instruction of block a is removed. We do not cover the case where
the sole edge exiting a is deleted – in order to keep the control
flow graph complete, such a branch instruction must be replaced
by a return instruction. Thus, we assume that the branch instruction
of a references several targets (one or more of which is block b).
If block a has multiple edges to block b, then the deletion of one
such reference from a does not meaningfully alter any path of the
control flow graph. Thus, no reconstruction of the dominator tree,
loop nesting forest, LCSSA form, or canonical form is necessary.

Algorithm 1 Edge Deletion

1: Remove a reference to b from a
2: if edge an (a, b) still exists then
3: return
4: end if

5: R← repair dominators(a, b)
6: K ← {l | latch(l) ∈ R or (a, b) is the backedge of l}
7: for l ∈ K do
8: Remove l from forest
9: end for

10: for b′ ∈ R do
11: Remove b′ from all loop body sets
12: Remove b′ from all loop exit sets
13: end for
14: for l 6∈ K where parent(l) ∈ K do
15: p← lowest ancestor of l such that p 6∈ K
16: Attach l as a child of p
17: end for

18: p← smallest loop containing a such that p 6∈ K
19: eject(p)

Then, the algorithm is complete. The remaining steps assume this
is not the case.

Step 2 (lines 5-17) First, the dominator tree is repaired using the
algorithm described by Ramalingam and Reps [17] or a similar
algorithm. This particular algorithm is chosen as it yields the set
of newly unreachable blocks, denoted by R. However, another
algorithm could be chosen if the set R is calculated first – in brief,
R is the empty set if b is still reachable after the deletion of edge

(a, b), and is the set of blocks in the (old) dominator subtree rooted
at b otherwise.

The loop body and loop exit sets are pruned to remove ref-
erences to unreachable blocks and the loop nesting structure is
pruned to remove references to loops that have lost their backedge.
At the end of line 17, the current loop nesting forest forms a fairly
good approximation of the correct loop nesting forest which can
later be refined. This approximation has the following five proper-
ties.

1. The loops of the function and loops in the approximate loop
nesting forest have a one-to-one correspondence, although the
loop may have an inaccurate parent, body set, or exit set.

2. The body sets of the approximate loop nesting forest maintain
a subset lattice (just as well-formed loop nesting forests do).

3. The body set of each inaccurate loop in the approximate loop
nesting forest is a superset of the body set of the loop in the
function with the same header.

4. The exit set of each inaccurate loop in the approximate loop
nesting forest is correct with respect to body set of the same
loop – specifically, the exit set must consist of all the blocks
that have a predecessor in the approximate body set but are not
themselves in the approximate body set.

5. Every loop with an inaccurate body set is an ancestor of the
deepest inaccurate loop in the approximate loop nesting forest.
More specifically, all inaccurate loops must have contained
block a prior to the deletion of the edge.

Before refining the approximation, we give a brief proof that
each of these properties hold in the approximate loop nesting forest.

1. Let l be a loop of the function prior to the deletion of edge (a, b)
and let S describe the subgraph of the loop reachable from
header(l) after the deletion of edge (a, b). S remains strongly
connected if it contains the block latch(l) and (a, b) was not
the backedge of l. Notice that latch(l) is reachable only if it
remains reachable from header(l) due to domination. This is
the same as the condition l 6∈ K. Additionally, the deletion of
an edge cannot introduce a backedge to the flow graph, so no
loop can be introduced to the function.

2. The body sets of the approximate loop nesting forest are con-
structed by removing blocks from the loop nesting forest prior
to the deletion of edge (a, b). When a block is removed from
a loop, it is also removed from all of its descendants. As the
original loop nesting forest was a subset lattice by definition,
the approximate loop nesting forest also forms a subset lattice.

3. Let l be a loop in the approximate loop nesting forest whose
body set is equivalent to body(l) \ R by construction. Suppose
a block b′ 6∈ body(l) \ R belongs in the body set of l after
the deletion of the edge. There must then exist a pair of paths
header(l) → b′ and b′ → latch(l), the two of which which
did not exist. This cannot occur as edge deletion does not add
paths to the flow graph.

4. Let L and X be the approximate body and exit sets, respec-
tively, of a loop l. First, suppose pred(b′)∩L = ∅, but b′ ∈ X .
AsX is constructed only by removing unreachable exits, b′ was
necessarily an exit of loop l prior to the deletion of the edge and
as the function was in canonical form, this was a dedicated exit.
As there are no remaining edges from L to b′, b′ ∈ R and b′

cannot exist in X . Now, suppose pred(b′)∩L 6= ∅ and b′ 6∈ L,
but b′ 6∈ X . The absence of b′ in X implies that b′ was not an
exit of l prior to the deletion of the edge and no such exit path
can be constructed by the deletion of an edge.

l

lp

lp′

l

lp

lp′

l

lp

lp′

K

original approximation actual

Figure 5: The relation between approximate and true nesting struc-
tures after the deletion of an edge. The loops corresponding be-
tween forests are shown by dotted lines.

5. Let l be a loop in the claimed loop nesting forest and let b′

be a superfluous block in the claimed body set of l that was
correctly in the body set of l before the deletion of edge (a, b).
Now, suppose a is not in the body set of l. Then, the deletion of
edge (a, b) either changed no paths in l, or made header(l)
unreachable. Both of these cases present a contradiction: in
the former case, l’s body set does not contain any superfluous
blocks; in the later case, there is no entry in the claimed loop
nesting forest representing loop l.

These properties lead us directly to an algorithm for refining
the approximation, presented in detail in Section 3.2. By Property
1, the approximate loop nesting forest has already identified the
correct loop headers and, if the control flow graph was in canonical
form prior to the deletion of the edge, the correct loop backedge.
This, combined with Property 5, allows us to bound the loops that
need to be refined: the loops encountered tracing from the deepest
loop that had contained block a to a root of the approximate loop
nesting forest. Figure 5 describes the relationship between violating
loops in the claimed loop nesting forest. In this example, loop l is
actually a direct child of loop lp′ (this occurs as the blocks of l no
longer have a path to the latch of loop lp).

The remaining properties describe the manner in which a loop
may be inaccurate. Property 3 ensures that the body set of a loop
can be refined simply by removing nodes. Property 2 and Property
4 show, respectively, that the parent and the exit set of a loop are
correct unless blocks are removed from the body. When blocks are
removed from a loop body, it is trivial to determine the correct
parent (the closest ancestor that remains a superset) and the correct
exit set can be determined by looking only at previous exits and
removed blocks.

Step 3 (lines 18-19) The eject procedure refines the approxima-
tion constructed in the previous step.

3.2 Block Ejection
Now, we turn our focus to refining the approximate loop nesting
forest created in the previous section so it becomes the correct
unique loop nesting forest of the modified control flow graph. We
have two major concerns to address: removing extraneous blocks
in the body set of an approximate loop, and placing loops under
the correct parent so that the loop nesting structure forms a subset
lattice.

Figure 6 illustrates a repair of such a loop nesting forest. The
graph of this example may have been created by removing the edge

ab

c

d

e

f

g

h

ab

c

d

e

f

g

h

Figure 6: Repairing loop nesting forest by ejecting blocks from a
loop.

a

b

c

d

e a

b

c

d

e

Figure 7: Block ejection creating an undedicated exit.

(f, d) or by inserting the subgraph consisting of blocks e, f , and
h on the edge (c, g), among other possibilities. Section 4 discusses
how function inlining can create such a broken graph. To repair the
graph, block e is ejected from the middle loop (but remains in the
outer loop as a path to the latch of the outer loop exists) and blocks
f and h are ejected from both the middle and outer loops. This
transformation also alters the exit sets so that g is no longer an exit
of the middle loop but e is, and f is the sole exit of the outer loop
(which had no exits previously). Notice that the entire body of the
innermost loop was ejected from its parent loop, and therefore the
parent of the ejected loop structure also changes.

The ejection algorithm, shown below, recurses over loops, start-
ing from the deepest inaccurate loop and working its way up to a
root of the forest. For each loop l, we partition its body set into
the disjoint sets I and O. Set I is composed of the blocks from
which the loop’s latch is still reachable in the subgraph induced by
body(l) (equivalently, where the loop’s latch is still reachable via
a path that does not contain header(l)). Set O is composed of the
blocks that are no longer part of the connected component forming
l after the deletion of the edge.

The extraneous blocks are pruned from the body of the loop.
This only affects the current loop – all blocks pruned from l are
still members of the body of all of l’s living ancestors. They may,
however, be ejected from an ancestor on a subsequent recursive
call. If the header of a loop is ejected (and then, necessarily, the
entire loop body), the ejected child loop is un-nested from l and
re-attached to l’s closest living ancestor.

Then, the exit set of loop l is recalculated to determine which
newly ejected blocks are new exits and which old exits no longer
have predecessors in the loop body.

It may also be helpful to note that if ejection is called as part
of an edge deletion procedure, the unreachable blocks have already
been pruned from the function. In this context, all blocks in the
claimed body of a loop are reachable from the header of that loop
due to domination.

Block ejection may create a violation of the dedicated exit
property. Figure 7 illustrates this case in which block d and one
of its predecessors are ejected from the loop. The dedicate exit
operation is applied over violating exit blocks in order to repair the

Algorithm 2 Block Ejection

1: I ← {b ∈ body(l) | there exists
2: a path b→ latch(l) in subgraph induced by body(l)}
3: O ← body(l) \ I

4: for b ∈ body(l) where b ∈ O do
5: Remove b from body(l)
6: end for
7: for child loop l′ of l where header(l′) ∈ O do
8: Attach l′ as a child of p(l)
9: end for

10: for b ∈ exit(l) where pred(l) ∩ I = ∅ do
11: Remove b from exit(l)
12: end for
13: for b ∈ O where pred(b) ∩ I 6= ∅ do
14: Add b to exit(l)
15: dedicate exit(l, b)
16: end for
17: for each definition d of r
18: where d occurs in I and a use of r occurs in O do
19: repair lcssa(l, d)
20: end for

21: if l is not a top-level loop then
22: eject(parent(l))
23: end if

r1 ← φ(p : r0, c : r3)
branch (r2 ← r1 < 10) ? b : c

r3 ← r1 + 1
branch a

r4 ← r1
· · ·

p

a

b

c

d

r1 ← φ(p : r0, c : r3)
branch (r2 ← r1 < 10) ? b : c

r3 ← r1 + 1
branch a

r4 ← r1
· · ·

p

a

b

c

Figure 8: Block ejection creating an LCSSA violation.

temporary violation of canonical form. As a reminder, the dedicate
exit procedure referenced in the algorithm pseudocode was briefly
discussed in Section 2.

Block ejection may also create a violation of LCSSA form.
Figure 8 illustrates this case in which a block containing a legal
use of a register is ejected from the loop that defines that register.
An LCSSA reconstruction algorithm, such as the one presented by
Braun et al. [5], is applied over such violations to repair LCSSA
form. The details of this operation are beyond the scope of this
paper.

a

b

c

d

e

f

(a) Pre-inlining.

a

b

c1 f

g

h i

j

k

c2

d

e

(b) Post-inlining.

a

b

c1 f

g

h i

j

k

c2

d

e

(c) Post-ejection.

Figure 9: Function inlining creates an opportunity for block ejection.

4. Additional Applications
Edge deletion is a common operation in optimization, but is not the
only application of the block ejection technique. Another prime op-
portunity for block ejection occurs during function inlining. When
a function is inlined, the entire domination and loop nesting struc-
tures of the inlined function are transplanted into the same struc-
tures of the calling function. If the inlined function has blocks that
cannot reach a function exit (non-exiting functions or non-exiting
loops), blocks and loops will be placed too deeply in the result-
ing loop nesting forest. This section details how to leverage block
ejection to solve this edge case.

The first two graphs of Figure 9 illustrates function inlining and
shows its effects on the loop nesting forest. The block containing
a call to a known function f can be split in two so the instruction
that occurs immediately before the call terminates block c1 and
the instruction occurring immediately after the call begins block
c2. Block c1 then branches to the entry block of a clone of f , and
each exit block (terminating with a return) of the clone instead
branches back to c2.

Fortunately, the dominator tree changes only locally. A clone of
the dominator tree of f must be attached as a child of the dominator
node of c1, as c1 immediately dominates entry(f) and the paths
within f do not change. The new immediate dominator of c2 is
the lowest common ancestor of all exit blocks of f , due to an
observation made by Alstrup and Laurisden [2]. As paths are only
altered between blocks c1 and c2, no other domination relationships
change and the dominator tree structure is maintained.

In the general case, the loop nesting forest can also be updated
simply. All blocks of f are inserted into the body of the loop
containing blocks c1 and c2, and a clone of the loop nesting forest
of f must be inserted as a child of the same loop. Assuming all
paths in the inlined function can reach some exit of the inlined
function, this is a correct transformation: as all blocks of f are
reachable by c1 and c2 is a successor of all exits of f , all blocks
of f must belong in the same connected component of c1 and c2.
However, it may be the case that the inlined function contained a
block that had no path to any exit of f . This also guarantees that no
such blocks can reach block c2, nor the latch of the loop containing
c1 and c2. Thus, the loop in which the function was inlined now
contains extraneous blocks that must be ejected. This process is

illustrated by the later two graphs in Figure 9. In this example,
blocks e′ and f ′ form a closed loop from which d is unreachable.
These blocks must be ejected to preserve the loop nesting forest.

5. Evaluation
As a brief evaluation to show the performance benefits of this
technique, we create a set of non-trivial flow graphs, then perform
a sequence of edge deletions. Each edge deletion uses the output of
the previous deletion, and all deleted edges are guaranteed to still
exist at the time of their deletion (no non-effectful operations were
counted).

For baseline performance, we calculate (from scratch) the dom-
inator tree and loop nesting forest and test each loop for canoni-
cal form (re-canonicalizing the loops in violation) after each edge
deletion. To contrast the baseline, we use the incremental technique
described in Section 3 to repair the dominator tree and loop nesting
forest and maintain canonical form.

The flow graphs of the Waddle IR used for this evaluation were
generated from compiled LLVM IR. The resulting flow graphs are
(mostly) isomorphic in control flow to the LLVM IR, but each
instruction in the generated graph is chosen randomly. Exception
flow, indirect function calls, and unreachability, for which there
are currently no direct representations in the Waddle IR, were
approximated as closely as possible. An instruction in a basic block
of the source IR and the generated instruction in the symmetric
basic block of the generated IR use the same register names.

The resulting generated graphs have the same control flow struc-
ture and live register intervals of a real-world program. This is more
than sufficient for this benchmark, as the exact semantics of the
program are inconsequential.

The six programs used to generate the LLVM IR are single-file
C++11 implementations of graph algorithms taken from the GAP
Benchmark Suite [4], described below. These sources were chosen
because they utilize a wide variety of iterative structures that were
likely to make realistic yet interesting loop nesting forests. The
original source (git commit f166dc4) is available on Github1. Each
compilation unit performs an operation over a graph whose edges
are stored as compressed sparse rows.

1 https://github.com/sbeamer/gapbs

https://github.com/sbeamer/gapbs

source recompute all repair all recompute dom repair dom % savings claimed
bc.cc 72.308 ± 18.022 19.982 ± 4.568 22.490 ± 5.980 1.720 ± 0.410 63.34%
bfs.cc 45.898 ± 1.132 14.678 ± 3.168 17.232 ± 1.498 1.750 ± 0.820 54.90%
cc.cc 59.614 ± 13.836 16.266 ± 2.074 18.664 ± 5.316 1.664 ± 1.146 64.34%
pr.cc 45.618 ± 5.062 16.058 ± 4.812 14.868 ± 3.272 1.500 ± 0.670 52.66%
sssp.cc 48.704 ± 6.026 14.650 ± 0.580 16.154 ± 2.464 1.384 ± 0.184 59.24%
tc.cc 51.884 ± 10.716 16.688 ± 3.042 17.436 ± 3.544 1.564 ± 0.316 56.10%

Figure 10: Wall time required to run benchmark – all times are given in milliseconds.

source edges domination queries nca queries dominator iterations partition iterations
bc.ll.ir 716 1,435 2,940 1,263 3,549
bfs.ll.ir 565 1,176 2,424 1,026 2,401
cc.ll.ir 601 1,215 2,474 1,066 2,422
pr.ll.ir 583 1,195 2,390 1,029 2,253
sssp.ll.ir 581 1,175 2,443 1,038 2,146
tc.ll.ir 595 1,214 2,480 1,061 2,342

source edges domination queries idom calculations backedge queries gather iterations
bc.ll.ir 716 76,775 44,454 22,943 17,253
bfs.ll.ir 565 43,353 35,164 18,147 8,147
cc.ll.ir 601 55,010 35,218 18,210 11,949
pr.ll.ir 583 39,236 31,356 16,261 7,847
sssp.ll.ir 581 42,644 33,098 17,130 8,758
tc.ll.ir 595 52,944 35,922 18,556 10,371

Figure 11: The number of (interesting) operations performed during benchmark trials (the top specifies the incremental repair technique, and
the bottom specifies re-computation technique).

– bc.cc: calculate betweenness centrality scores for each vertex

– bfs.cc: perform a breadth-first traversal and create a mapping
vertices to its predecessor in the traversal order

– cc.cc: label each vertex with an identifier for its connected
component

– pr.cc: calculate PageRank scores for each vertex – terminate
once the total change is less than some epsilon

– sssp.cc: calculate the shortest path distance from a source
vertex for all vertices

– tc.cc: count the number of triangles (cliques of size 3) in
an undirected graph where neighborhoods are sorted by vertex
labels

To give a brief sense of the scale of the Waddle IR used here:
each compilation unit contains between 363 and 445 total function
definitions, between 71 and 101 of which are interesting (neither
trivial, a single node, nor loop-less). There are between 2 and 237
blocks per function (with an average of 21 blocks per function) and
between 2 and 354 edges per function (with an average of 30 edge
per function). Each interesting function contains between 1 and 10
loops with depths ranging between 1 (top-level) and 4. The size of
loop body sets range between 1 and 99 blocks, and the size of loop
exit sets range between 0 and 10 blocks. Many of the loops with
empty exit sets come from Waddle’s equivalent of an unreachable
LLVM instruction, in which a single trivial block branches back to
itself.

Figure 10 gives the wall-time required for running the sequence
of edge deletions over each of the programs in the suite. The repair
columns give the time taken for the incremental approach, and the
recompute columns give the time taken when the dominator and
loop structures are computed from scratch between operations. We
break this down further into the time required for the entire opera-
tion (the all columns), and the time required only to repair the dom-

inator tree (the dom columns) to show that the time savings are not
completely due to previous work in dominator tree reconstruction.
The % savings claimed column gives the percentage of the aver-
age runtime reduction that is not attributed to previous work (i.e.
the percentage reduction between the difference of the recompute
all and repair all columns and the difference of the recompute dom
and repair dom columns). Each data point is an average of five tri-
als. For this set of programs, the incremental runtime runs in about
30% of the time required for the baseline approach on average.

To examine why the runtime of the incremental approach is so
much better, we can compare the number of interesting operations
used by each technique. In this context, we use interesting opera-
tions to mean those with a dominating usage count or those that
are likely to be expensive to perform. Figure 11 gives these details
(where non-interesting operation counts are omitted). In both ta-
bles, the edges column specifies how many edges were in the dele-
tion sequence for each source program.

Both techniques performed a fair number of domination queries,
but the incremental technique showed a 97% decrease on average
in the total number of such operations performed. The remaining
interesting operations diverge for each technique.

For the incremental repair technique, nearest common ancestor
query and dominator iteration operations are both used to repair
the dominator tree. In lieu of maintaining priority order of the con-
trol flow graph, we alter the Ramalingam and Reps [17] dominator
tree repair algorithm to simply perform a fixed-point loop during
reconstruction – this change is discussed further in Section 6. The
partition iteration operation specifies the number of set intersec-
tions required to determine which blocks remain in the body of a
loop after an edge deletion. This, in essence, counts the number of
levels visited in a breadth-first search from the latch of a loop.

For the re-computation technique, the idom calculations are
used to compute the dominator tree. The backedge query operation
is used to find loop header candidates by checking whether or not

they dominate one of their predecessors – this explains the massive
increase in domination queries for this technique. Once a header
is found, its body is found via a series of gather iteration opera-
tions. Similar to partition, gather performs the same breadth-first
search from a latch back to the header candidate. When compar-
ing the number of partition and gather iterations between the two
techniques, there is a 75% decrease on average in the number of
iterations performed by the incremental technique.

We find these results to be very encouraging despite the base-
line methodology being rather unsophisticated. A more intelligent
baseline would batch such deletion operations so that very frequent
recomputation is unnecessary.

Waddle uses the edge deletion operation in a number of or-
thogonal transformations (currently if-simplification, jump thread-
ing, jump simplification, function inlining, and loop unswitch-
ing). Batching deletions across different optimization passes would
prove difficult as each optimization pass assumes that canonical
form has been preserved in its input. Additionally, this evaluation
has shown that when reconstruction or iterative repair is actually
necessary, the savings can be significant – the savings of repairing
the loop nesting forest alone is very similar to the savings of re-
pairing the dominator tree. The latter operation has received decent
research and implementation attention (which implies its worth in
practice). More robust evaluations that include the savings over
entire optimization passes, which would conform precisely to the
usage of an optimizing compiler in practice, are planned for future
work.

6. Related Work
Computing the loop nesting forest efficiently has been a well-
researched topic [10, 16, 20–22], but research into incrementally
maintaining the the loop nesting forest as the flow graph it rep-
resents undergoes changes remains wanting. The same cannot be
said for incremental re-computation of dominator trees, which has
received an abundance of research attention over the years [1, 3, 6,
9, 12–15, 17–19]. In this section, we briefly describe an approach
presented by Ramalingam and Reps [17] to update the dominator
tree of a reducible control flow graph when a single flow edge is
inserted or removed. We focus on this particular algorithm due to
its use in the proof-of-concept implementation of Waddle.

The basic idea of the algorithm is to conservatively approxi-
mate a set of affected blocks for which the immediate dominator
changes, then re-calculate the new immediate dominator using the
old dominator tree.

The algorithm requires only a single pass if the affected blocks
are processed in a topological order of the acyclic graph induced
by removing backedges. This ordering is encoded by giving each
block a priority and updating those priorities whenever an edge is
added to the graph. Removal of edges do not affect block priorities.

Let n be the number of blocks in a graph and let m be the num-
ber of edges. The worst-case complexity of updating the dominator
tree (excluding the step of updating the priority ordering when nec-
essary) is O(‖A‖↔ log(n))2, where A is the approximate set of
affected blocks. Alpern et al. [1] present an incremental algorithm
to update the priority orderings of a graph after the insertion of
an edge, which takes O(‖κ‖↔ log(‖κ‖↔)) time in the worst case,
where κ is the set of blocks whose priorities will change. In all, up-
dating the dominator tree after inserting or removing a single edge
takes O(m log(n)) time.

The deletion of a backedge does not affect domination and
requires no update to the dominator tree. The deletion of a forward
edge (u,w) where w is still reachable may reduce the set of paths

2 ‖A‖↔ denotes the number of blocks in the setA plus the number of edges
entering and the number of edges leaving A.

to a block y, which changes its immediate dominator. The affected
blocks are conservatively approximated by the following set, which
contains the blocks that are siblings of w in the dominator tree.

{v | idom(v) = idom(w)},
An example of a dominator tree’s affected blocks is illustrated by
Figure 12.

The immediate dominator of each block in this set is then re-
calculated. If the deletion of edge (u,w) causes the subgraph R
(which consists of the blocks dominated by w) to become discon-
nected, then each block is removed, and any forward edges from R
to a still-reachable block must be deleted individually as described
above.

7. Implementation Details
In the reference implementation, a block keeps a reference to the
set of its predecessors and a reference to the deepest loop to which
they belong. Finding the body sets to which a block b ∈ R belongs
simply requires tracing up the loop nesting forest from the block’s
loop reference. Finding the exit sets to which a block b ∈ R belongs
requires doing the same for each of b’s predecessors (and ensuring
containment for the candidate loop).

The Ramalingam and Reps dominator tree reconstruction algo-
rithm [17] discussed in Section 6 specifies that the processing of
blocks must be done in the same order as the block’s priority or-
dering. Suppose that blocks a and b are both in the affected set and
calculating the immediate dominator of a relies on knowing correct
immediate dominator of b. In this case, processing block a before
b may lead to incorrect results. This incorrect ordering does not
occur if blocks are processed topologically. In the implementation
of Waddle, we forgo tracking priority orders of blocks to simplify
the addition of edges, but at an increased cost during edge deletion.
Instead of processing blocks in order, we simply re-calculate the
immediate dominators of all affected blocks until no more changes
occur. This trade-off seems beneficial in general as the cost of main-
taining priority order on edge insertion is relatively high, but the
out-degree of basic blocks (and therefore the maximum number of
siblings in the tree) is relatively low.

References
[1] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck.

Incremental evaluation of computational circuits. In Proceedings of
the first annual ACM-SIAM symposium on Discrete algorithms, pages
32–42. Society for Industrial and Applied Mathematics, 1990.

[2] S. Alstrup and P. W. Lauridsen. A simple and optimal algorithm for
finding immediate dominators in reducible graphs, 1996.

[3] S. Alstrup and P. W. Lauridsen. A simple dynamic algorithm for
maintaining a dominator tree. 1996.

[4] S. Beamer, K. Asanović, and D. Patterson. The GAP Benchmark
Suite. ArXiv e-prints, Aug. 2015.

[5] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and
A. Zwinkau. Simple and efficient construction of static single assign-
ment form. In Compiler Construction, pages 102–122. Springer, 2013.

[6] M. D. Carroll and B. G. Ryder. Incremental data flow analysis via
dominator and attribute update. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’88, pages 274–284, New York, NY, USA, 1988. ACM.
ISBN 0-89791-252-7. . URL http://doi.acm.org/10.1145/
73560.73584.

[7] L. Carter, J. Ferrante, and C. Thomborson. Folklore confirmed: re-
ducible flow graphs are exponentially larger. In ACM SIGPLAN No-
tices, volume 38, pages 106–114. ACM, 2003.

[8] E. Fritz. Waddle – Always-Canonical Intermediate Representation.
PhD thesis, University of Wisconsin – Milwaukee, Milwaukee, Wis-
consin, Expected 2018.

http://doi.acm.org/10.1145/73560.73584
http://doi.acm.org/10.1145/73560.73584

a

b c

d e

f g

i j

h

k l

a

b c

d e

f g

i

j

m h

k l

Figure 12: A flow graph (left) and its dominator (right) tree. The deletion of edge (d, f) will require additional processing of edge (f, j).
The newly unreachable blocks are outlined. The set of possibly affected nodes (the siblings of j in the dominator tree) are shaded.

[9] L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experi-
mental study of dynamic dominators. In Algorithms–ESA 2012, pages
491–502. Springer, 2012.

[10] P. Havlak. Nesting of reducible and irreducible loops. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 19(4):
557–567, 1997.

[11] J. Janssen and H. Corporaal. Making graphs reducible with controlled
node splitting. ACM Trans. Program. Lang. Syst., 19(6):1031–1052,
Nov. 1997. ISSN 0164-0925. . URL http://doi.acm.org/10.
1145/267959.269971.

[12] R. Johnson. Dependence Based Program Analysis. PhD thesis,
Cornell University, Ithaca, New York, August 1994.

[13] R. Johnson, D. Pearson, and K. Pingali. The program structure tree:
Computing control regions in linear time. In ACM SigPlan Notices,
volume 29, pages 171–185. ACM, 1994.

[14] N. Parotsidis and L. Georgiadis. Dominators in directed graphs: a
survey of recent results, applications, and open problems. 2013.

[15] K. Patakakis, L. Georgiadis, and V. A. Tatsis. Dynamic dominators
in practice. In 2011 Panhellenic Conference on Informatics, pages
100–104. IEEE, 2011.

[16] G. Ramalingam. Identifying loops in almost linear time. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21
(2):175–188, 1999.

[17] G. Ramalingam and T. Reps. An incremental algorithm for maintain-
ing the dominator tree of a reducible flowgraph. In Proceedings of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of program-
ming languages, pages 287–296. ACM, 1994.

[18] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. An efficient incremental
algorithm for maintaining dominator trees and its application to φ-
nodes update. ACAPS Technical Memo 77, 1994.

[19] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. Incremental computation of
dominator trees. In Papers from the 1995 ACM SIGPLAN Workshop
on Intermediate Representations, IR ’95, pages 1–12, New York, NY,
USA, 1995. ACM. ISBN 0-89791-754-5. . URL http://doi.acm.
org/10.1145/202529.202531.

[20] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. Identifying loops using DJ
graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(6):649–658, 1996.

[21] B. Steensgaard. Sequentializing program dependence graphs for irre-
ducible programs. 1993.

[22] R. Tarjan. Testing flow graph reducibility. In Proceedings of the
fifth annual ACM symposium on Theory of computing, pages 96–107.
ACM, 1973.

[23] S. Unger and F. Mueller. Handling irreducible loops: Optimized node
splitting vs. DJ-graphs. Springer, 2001.

http://doi.acm.org/10.1145/267959.269971
http://doi.acm.org/10.1145/267959.269971
http://doi.acm.org/10.1145/202529.202531
http://doi.acm.org/10.1145/202529.202531

	Introduction
	Loop Nesting Forests and Canonical Form
	Edge Deletion
	Edge Deletion
	Block Ejection

	Additional Applications
	Evaluation
	Related Work
	Implementation Details

