
Waddle
Maintaining Canonical Form After Edge Deletion

Eric Fritz
July 17, 2018

University of Wisconsin – Milwaukee



What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

p

h e

dc

a b

j

l

p

h

ec b j

a dl

1



What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

p

h e

dc

a b

j

l

p

h

ec b j

a dl

1



What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets · loop exit sets · loop nesting structure

p

h e

dc

a b

j

l

exits:
∅

exits:
{b}

2



What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets · loop exit sets · loop nesting structure

p

h e

dc

a b

j

l

exits:
∅

exits:
{b}

2



What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once · uses of name occur within defining loop

x1 ← · · ·

3



What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once · uses of name occur within defining loop

x1 ← · · ·

· · · ← x1

3



What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once · uses of name occur within defining loop

x2 ← · · · x1 ← · · ·

· · · ← x?

3



What Does Waddle Maintain? (4)

‘Canonical’ Properties
LLVM’s Loop Simplify Form

4



Optimization Pipeline Strategies



Repair On-Demand (LLVM’s Approach)

IR1 opt1 IR2 opt2 IR3 opt3 IR4

domtree

loops

loop-simplify

lcssa

loops

loop-simplify

lcssa

domtree

loops

loop-simplify

lcssa

5



LLVM 6.0.0 -O2 Passes

ipsccp
globalopt
domtree
mem2reg

deadargelim
domtree

aa
loops

lazy-block-freq
instcombine
simplifycfg
basiccg

globals-aa
prune-eh
inline

functionattrs
domtree
sroa
aa

memoryssa
early-cse-memssa

speculative-
execution
domtree

aa
lazy-value-info
jump-threading
lazy-value-info
correlated-

propagation
simplifycfg
domtree

aa
loops

lazy-block-freq
instcombine

libcalls-shrinkwrap
loops

branch-prob
block-freq

lazy-block-freq
pgo-memop-opt

domtree
aa

loops
lazy-block-freq
tailcallelim
simplifycfg
reassociate
domtree
loops

loop-simplify
lcssa
aa

scalar-evolution
loop-rotate

licm
loop-unswitch

simplifycfg
domtree

aa
loops

lazy-block-freq
instcombine
loop-simplify

lcssa
scalar-evolution

indvars
loop-idiom

loop-deletion
loop-unroll

mldst-motion
aa

memdep
lazy-block-freq

gvn
aa

memdep
memcpyopt

sccp
domtree

demanded-bits
bdce
aa

loops
lazy-block-freq
instcombine

lazy-value-info
jump-threading
lazy-value-info
correlated-
propagation
domtree

aa
memdep

dse
loops

loop-simplify
lcssa
aa

scalar-evolution
licm

postdomtree
adce

simplifycfg
domtree

aa
loops

lazy-block-freq
instcombine

barrier
elim-avail-extern

basiccg
rpo-functionattrs

globalopt
globaldce

basiccg
globals-aa
float2int
domtree
loops

loop-simplify
lcssa
aa

scalar-evolution
loop-rotate

loop-accesses
lazy-block-freq
loop-distribute
branch-prob
block-freq

scalar-evolution
aa

loop-accesses
demanded-bits
lazy-block-freq
loop-vectorize
loop-simplify

scalar-evolution
aa

loop-accesses
loop-load-elim

aa
lazy-block-freq
instcombine

simplifycfg
domtree
loops

scalar-evolution
aa

demanded-bits
lazy-block-freq
slp-vectorizer
instcombine
loop-simplify

lcssa
scalar-evolution

loop-unroll
lazy-block-freq
instcombine
loop-simplify

lcssa
scalar-evolution

licm
globaldce
constmerge
domtree
loops

branch-prob
block-freq

loop-simplify
lcssa
aa

scalar-evolution

6



Always Canonical (Waddle’s Approach)

IR1 opt1 IR2 opt2 IR3 opt3 IR4

small incremental repairs

7



LLVM Source – LoopUnroll.cpp#L845

// If we have a pass and a DominatorTree we should re-simplify impacted loops
// to ensure subsequent analyses can rely on this form. We want to simplify
// at least one layer outside of the loop that was unrolled so that any
// changes to the parent loop exposed by the unrolling are considered.
if (DT) {

if (OuterL) {
// OuterL includes all loops for which we can break loop-simplify, so
// it's sufficient to simplify only it (it'll recursively simplify inner
// loops too).

// TODO: That potentially might be compile-time expensive. We should try
// to fix the loop-simplified form incrementally.
simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);

} else {
// Simplify loops for which we might've broken loop-simplify form.
for (Loop *SubLoop : LoopsToSimplify)

simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
}

}

8



Canonical Form Loop Properties



Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

9



Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

9



Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

9



Canonicalization

s

a

ϵa

b

cd

e

f

g

ϵe ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

placeholder 10



Canonicalization – Dedicate Preheaders

s

a

ϵa

b

cd

e

f

g

ϵe ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

Construct loop nesting forest 10



Canonicalization – Dedicate Preheaders

s

a

ϵa

b

cd

e

f

g

ϵs

ϵe ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

Dedicate preheader of outer (blue) loop 10



Canonicalization – Dedicate Exits

s

aϵa

b

cd

e

f

g

ϵs

ϵe ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

Dedicate preheader of inner (red) loop 10



Canonicalization – Dedicate Exits

s

aϵa

b

cd

e

f

g

ϵs

ϵg

ϵe ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

Dedicate exit (block g) of outer (blue) loop 10



Canonicalization – Ensure Unique Latches

s

aϵa

b

cd

e

f

g

ϵs

ϵg

ϵe

ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

Dedicate exit (block a) of inner (red) loop 10



Canonicalization – Ensure Unique Latches

s

aϵa

b

cd

e

f

g

ϵs

ϵg

ϵe ϵef

exits:
{d,g}

exits:
{d, ϵg}

exits:
{a,d, f}

exits:
{ϵa,d, f}

Make latch for outer (blue) loop unique 10



Edge Deletion



Algorithm Outline

(1) Remove edge from graph

(2) Remove references to unreachable blocks and edges
(3) Eject extraneous blocks from loop where edge was removed

11



Algorithm Outline

(1) Remove edge from graph
(2) Remove references to unreachable blocks and edges

(3) Eject extraneous blocks from loop where edge was removed

11



Algorithm Outline

(1) Remove edge from graph
(2) Remove references to unreachable blocks and edges
(3) Eject extraneous blocks from loop where edge was removed

11



Edge Deletion

Example #1

12



Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

l m

exits:
∅

exits:
{l}

exits:
{j, l}
exits:
{j, ϵl}

exits:
{k, l}

exits:
{j, k, l}
exits:
{i}

Initial graph 13



Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

l m

exits:
∅

exits:
{l}

exits:
{j, l}
exits:
{j, ϵl}

exits:
{k, l}

exits:
{j, k, l}
exits:
{i}

Edge deleted 13



Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

l m

exits:
∅

exits:
{l}

exits:
{j, l}
exits:
{j, ϵl}

exits:
{k, l}

exits:
{j, k, l}

exits:
{i}

Eject block j from inner (blue) loop 13



Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

l m

exits:
∅

exits:
{l}

exits:
{j, l}
exits:
{j, ϵl}

exits:
{k, l}
exits:
{j, k, l}

exits:
{i}

Eject block i from inner (blue) loop 13



Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

l m

exits:
∅

exits:
{l}

exits:
{j, l}

exits:
{j, ϵl}

exits:
{k, l}
exits:
{j, k, l}

exits:
{i}

Eject block j from middle (red) loop 13



Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

ϵl l m

exits:
∅

exits:
{l}
exits:
{j, l}

exits:
{j, ϵl}

exits:
{k, l}
exits:
{j, k, l}

exits:
{i}

Place block ϵl on edge (i, l) to dedicate exit 13



Edge Deletion

Example #2

14



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l

m

m

m

m

m

exits:
∅

exits:
{e}
exits:
{d}
exits:
{c}
exits:
{b}

exits:
{l}

exits:
∅

exits:
{k, l}

exits:
∅

Initial graph 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l m

m

m

m

m

exits:
∅

exits:
{e}
exits:
{d}
exits:
{c}
exits:
{b}

exits:
{l}

exits:
∅

exits:
{k, l}

exits:
∅

Edge deleted 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l

m

m

m

m

m

exits:
∅

exits:
{e}
exits:
{d}
exits:
{c}
exits:
{b}

exits:
{l}

exits:
∅

exits:
{k, l}

exits:
∅

Remove unreachable blocks from graph, loop nesting forest 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l

m

m

m

m

m

exits:
∅

exits:
{e}
exits:
{d}
exits:
{c}
exits:
{b}

exits:
{l}
exits:
∅

exits:
{k, l}

exits:
∅

Remove destroyed middle (red) loop 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l m

m

m

m

m exits:
∅

exits:
{e}

exits:
{d}
exits:
{c}
exits:
{b}

exits:
{l}
exits:
∅

exits:
{k, l}

exits:
∅

Eject block e (and its loop) from the outer (cyan) loop 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l m

m

m

m

m exits:
∅

exits:
{e}

exits:
{d}

exits:
{c}
exits:
{b}

exits:
{l}
exits:
∅

exits:
{k, l}

exits:
∅

Eject block d from outer (cyan) loop 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l m

m

m

m

m exits:
∅

exits:
{e}
exits:
{d}

exits:
{c}

exits:
{b}

exits:
{l}
exits:
∅

exits:
{k, l}

exits:
∅

Eject block c from outer (cyan) loop 15



Deleting Edge (f, i) – Incremental Repair

e

f

g

h

d

c

b

a

d

c

b

i

j

k

l

i

j

k

l m

m

m

m

m

exits:
∅

exits:
{e}
exits:
{d}
exits:
{c}

exits:
{b}

exits:
{l}
exits:
∅

exits:
{k, l}

exits:
∅

Eject block b from outer (cyan) loop 15



Additional Applications



Function Inlining

a

cb

b′

d

f

p

x

z w

q

r

y

p′

x′

z′ w′

q′

r′

y′

r′

y′

exits:
∅

exits:
{r′}

exits:
∅

exits:
{q}
exits:
{q′}

16



Function Inlining

a

cb

b′

d

fp

x

z w

q

r

y

p′

x′

z′ w′

q′

r′

y′

r′

y′

exits:
∅

exits:
{r′}

exits:
∅

exits:
{q}

exits:
{q′}

16



Function Inlining

a

cb

b′ d

fp

x

z w

q

r

y

p′

x′

z′ w′

q′

r′

y′

r′

y′

exits:
∅

exits:
{r′}

exits:
∅

exits:
{q}

exits:
{q′}

16



Function Inlining

a

cb

b′ d

fp

x

z w

q

r

y

p′

x′

z′ w′

q′

r′

y′

r′

y′

exits:
∅

exits:
{r′}

exits:
∅

exits:
{q}

exits:
{q′}

16



Evaluation



Methodology

(1) Construct Waddle IR from C++ source (through LLVM)
- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, ≤ 10 loops (≤ depth of 4) per function

(2) Construct a stable order of edges
(3) For each edge that has siblings remaining:

- Delete edge and reconstruct canonical form (baseline)
- Delete edge using procedure described here

17



Methodology

(1) Construct Waddle IR from C++ source (through LLVM)
- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, ≤ 10 loops (≤ depth of 4) per function

(2) Construct a stable order of edges

(3) For each edge that has siblings remaining:
- Delete edge and reconstruct canonical form (baseline)
- Delete edge using procedure described here

17



Methodology

(1) Construct Waddle IR from C++ source (through LLVM)
- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, ≤ 10 loops (≤ depth of 4) per function

(2) Construct a stable order of edges
(3) For each edge that has siblings remaining:

- Delete edge and reconstruct canonical form (baseline)
- Delete edge using procedure described here

17



Results

BC BFS CC PR SSSP TC
0

15

30

45

60

75

90

ru
nt
im

e
(m

s)

recompute
repair

64.80 to 72.7% decrease in runtime

18



Results

BC BFS CC PR SSSP TC
0

15

30

45

60

75

90

ru
nt
im

e
(m

s)

recompute
repair

64.80 to 72.7% decrease in runtime
18



Results

BC BFS CC PR SSSP TC
0

15

30

45

60

75

90

do
m

do
m do
m

do
m

do
m do
m

lo
op

s

lo
op

s lo
op

s

lo
op

s

lo
op

s

lo
op

s

ru
nt
im

e
(m

s)

recompute
repair

64.80 to 72.7% decrease in runtime
18



Questions?

18



Bonus Slides



Subgraph Duplication (Loop Unswitching)

branch h()

h

switch r cv 7→ s1() s2()

s1 s2

l

e

h′

switch cv cv 7→ s′1() s′2()

s′1s′2

l′

19



Subgraph Duplication (Loop Unswitching)

switch r cv 7→ h() h′()

h

switch unit cv 7→ s1() s2()

s1 s2

l

e

h′

switch cv cv 7→ s′1() s′2()

s′1s′2

l′

19



Thank You!

19


	Optimization Pipeline Strategies
	Canonical Form Loop Properties
	Edge Deletion
	Additional Applications
	Evaluation
	Bonus Slides

