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What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block
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What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure



What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure

exits:

0

) exits:
{b}




What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once - uses of name occur within defining loop
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What Does Waddle Maintain? (4)

‘Canonical’ Properties
LLVM’s Loop Simplify Form



Optimization Pipeline Strategies



Repair On-Demand (LLVM'’s Approach)
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LLVM 6.0.0
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Always Canonical (Waddle’s Approach)
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LLVM Source - LoopUnroll.cpp#L

if (DT) {
if (OuterL) {

// TODO: That potentially might be compile-time expensive. We should try
// to fix the loop-simplified form incrementally.
simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);

} else {

for (Loop *SubLoop : LoopsToSimplify)
simplifyLoop (SubLoop, DT, LI, SE, AC, PreserveLCSSA);



Canonical Form Loop Properties




Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting
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Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous



Canonicalization



Canonicalization — Dedicate Preheaders
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Canonicalization — Dedicate Exits

exits:
{d, g}

o exits:
{a,d.f}

Dedicate exit (block g) of outer (blue) loop 1



Canonicalization - Ensure Unique Latches

exits:
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Dedicate exit (block a) of inner (red) loop 1



Canonicalization - Ensure Unique Latches

exits:
{d, g}

exits:

{607 dvf}

Make latch for outer (blue) loop unique 10



Edge Deletion




Algorithm Outline

(1) Remove edge from graph

1



Algorithm Outline

(1) Remove edge from graph

(2) Remove references to unreachable blocks and edges
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Algorithm Outline

(1) Remove edge from graph
(2) Remove references to unreachable blocks and edges

(3) Eject extraneous blocks from loop where edge was removed

1



Example #1



Deleting Edge (j, h) - Incremental Repair

Initial graph 13



Deleting Edge (j, h) - Incremental Repair

Edge deleted 13



Deleting Edge (j, h) - Incremental Repair

Eject block j from inner (blue) loop 13



Deleting Edge (j, h) - Incremental Repair

Eject block i from inner (blue) loop 13



Deleting Edge (j, h) - Incremental Repair

Eject block j from middle (red) loop 13



Deleting Edge (j, h) - Incremental Repair

Place block ¢ on edge (i, () to dedicate exit E



Example #2
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Deleting Edge (f, i) — Incremental Repair

Initial graph 15



Deleting Edge (f, i) — Incremental Repair

Edge deleted B



Deleting Edge (f, i) — Incremental Repair

Remove unreachable blocks from graph, loop nesting forest 15
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Remove destroyed middle (red) loop
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Eject block e (and its loop) from the outer (cyan) loop
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Eject block d from outer (cyan) loop



Deleting Edge (f, i) — Incremental Repair
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Deleting Edge (f, i) — Incremental Repair
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Additional Applications




Function Inlining
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Function Inlining
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Function Inlining




Function Inlining
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Evaluation




Methodology

(1) Construct Waddle IR from C++ source (through LLVM)
- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, < 10 loops (< depth of 4) per function
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Methodology

(1) Construct Waddle IR from C++ source (through LLVM)

- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, < 10 loops (< depth of 4) per function

(2) Construct a stable order of edges
(3) For each edge that has siblings remaining:

- Delete edge and reconstruct canonical form (baseline)
- Delete edge using procedure described here
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Questions?



Bonus Slides




Subgraph Duplication (Loop Unswitching)
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Subgraph Duplication (Loop Unswitching)
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Thank You!
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