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What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block
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What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets · loop exit sets · loop nesting structure
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What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once · uses of name occur within defining loop

x1 ← · · ·
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What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once · uses of name occur within defining loop

x2 ← · · · x1 ← · · ·

· · · ← x?

3



What Does Waddle Maintain? (4)

‘Canonical’ Properties
LLVM’s Loop Simplify Form
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Optimization Pipeline Strategies



Repair On-Demand (LLVM’s Approach)

IR1 opt1 IR2 opt2 IR3 opt3 IR4
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LLVM 6.0.0 -O2 Passes

ipsccp
globalopt
domtree
mem2reg

deadargelim
domtree

aa
loops

lazy-block-freq
instcombine
simplifycfg
basiccg

globals-aa
prune-eh
inline

functionattrs
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sroa
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memoryssa
early-cse-memssa

speculative-
execution
domtree
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jump-threading
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simplifycfg
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lazy-block-freq
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libcalls-shrinkwrap
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lazy-block-freq
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gvn
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dse
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licm

postdomtree
adce

simplifycfg
domtree

aa
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lazy-block-freq
instcombine

barrier
elim-avail-extern

basiccg
rpo-functionattrs
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globaldce

basiccg
globals-aa
float2int
domtree
loops

loop-simplify
lcssa
aa

scalar-evolution
loop-rotate

loop-accesses
lazy-block-freq
loop-distribute
branch-prob
block-freq

scalar-evolution
aa

loop-accesses
demanded-bits
lazy-block-freq
loop-vectorize
loop-simplify

scalar-evolution
aa

loop-accesses
loop-load-elim

aa
lazy-block-freq
instcombine

simplifycfg
domtree
loops

scalar-evolution
aa

demanded-bits
lazy-block-freq
slp-vectorizer
instcombine
loop-simplify
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scalar-evolution

loop-unroll
lazy-block-freq
instcombine
loop-simplify

lcssa
scalar-evolution

licm
globaldce
constmerge
domtree
loops

branch-prob
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loop-simplify
lcssa
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scalar-evolution
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Always Canonical (Waddle’s Approach)

IR1 opt1 IR2 opt2 IR3 opt3 IR4

small incremental repairs
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LLVM Source – LoopUnroll.cpp#L845

// If we have a pass and a DominatorTree we should re-simplify impacted loops
// to ensure subsequent analyses can rely on this form. We want to simplify
// at least one layer outside of the loop that was unrolled so that any
// changes to the parent loop exposed by the unrolling are considered.
if (DT) {

if (OuterL) {
// OuterL includes all loops for which we can break loop-simplify, so
// it's sufficient to simplify only it (it'll recursively simplify inner
// loops too).

// TODO: That potentially might be compile-time expensive. We should try
// to fix the loop-simplified form incrementally.
simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);

} else {
// Simplify loops for which we might've broken loop-simplify form.
for (Loop *SubLoop : LoopsToSimplify)

simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
}

}

8



Canonical Form Loop Properties



Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

9



Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

9



Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

9



Canonicalization
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Canonicalization – Dedicate Preheaders
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Canonicalization – Dedicate Exits
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Canonicalization – Ensure Unique Latches
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Canonicalization – Ensure Unique Latches
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Edge Deletion



Algorithm Outline

(1) Remove edge from graph

(2) Remove references to unreachable blocks and edges
(3) Eject extraneous blocks from loop where edge was removed
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Edge Deletion

Example #1
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Deleting Edge (j,h) – Incremental Repair
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Deleting Edge (j,h) – Incremental Repair
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Deleting Edge (j,h) – Incremental Repair
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Deleting Edge (j,h) – Incremental Repair

e

f

g

h

d

c

b

a

i

j

i

j

k

l m

exits:
∅

exits:
{l}

exits:
{j, l}

exits:
{j, ϵl}

exits:
{k, l}
exits:
{j, k, l}

exits:
{i}

Eject block j from middle (red) loop 13



Deleting Edge (j,h) – Incremental Repair
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Edge Deletion

Example #2
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Deleting Edge (f, i) – Incremental Repair
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Additional Applications



Function Inlining
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Evaluation



Methodology

(1) Construct Waddle IR from C++ source (through LLVM)
- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, ≤ 10 loops (≤ depth of 4) per function

(2) Construct a stable order of edges
(3) For each edge that has siblings remaining:

- Delete edge and reconstruct canonical form (baseline)
- Delete edge using procedure described here
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Results
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Questions?
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Bonus Slides



Subgraph Duplication (Loop Unswitching)
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Subgraph Duplication (Loop Unswitching)
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Thank You!
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