Waddle

Maintaining Canonical Form After Edge Deletion

Eric Fritz
July 17, 2018

University of Wisconsin — Milwaukee L

What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

What Does Waddle Maintain? (1)

Dominator Tree
encodes which blocks occur on all paths to another block

7
7Yy

What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure

What Does Waddle Maintain? (2)

Loop Nesting Forest
encodes loop body sets - loop exit sets - loop nesting structure

exits:

0

) exits:
{b}

What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once - uses of name occur within defining loop

What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once - uses of name occur within defining loop

What Does Waddle Maintain? (3)

SSA + LCSSA Form
all names defined once - uses of name occur within defining loop

What Does Waddle Maintain? (4)

‘Canonical’ Properties
LLVM’s Loop Simplify Form

Optimization Pipeline Strategies

Repair On-Demand (LLVM'’s Approach)

loop-simplify m loop-simplify
loops loop-simplify loo,
Y

]

L

> IR1

LLVM 6.0.0

-02 Passes

ipsccp

obalopt
domtree
mema2reg

deadarg

inline
functionattrs
domtree
sroa

men

early-cse-
speculativ

execution
domtree

domtree
aa
loops

lock-freq

libcalls-shrinkwrap
loops
branch-prob
block-freq

lazy-block-freq

pgo-memop-opt
domtree
aa
loops
k-freq

eassC
domtree
loops
loop-simplify

aa

scalar-evolution

oop-rotate

scalar-e!

simplifycfg
domtree

loops

instcombine
loop-simplify
lcsse

olution

indvars

mldst-motion

memdep
memcpyopt
scep
domtree
d-bits

azy-value-
jump-thread

azy-value

correlated-
P gation
domtree
aa
memdep
dse
loops
loop-simplify

be

oat2int
domtree
loops
loop-simplify

aa

scalar-evolutior
loop-rotate

loc

lazy-bl

loop-d

lock-frec
olution

loop-simplify

scalar-evolutior

oad-elim

lazy-block-freq

nstcombine

simplifycfg
domtree
loops
scalar-evolution

aa

emanded-bits
lazy-block-freq
slp r
Instcomb

loop-simplify

ne

scalar-evolution
loop-unroll
lazy-block-freq
Iinstcombine
loop-simplify

volution
licm

dce

domtree
loops

branch-prob
block-freq

loop-simplify

aa
scalar-evolution

Always Canonical (Waddle’s Approach)

IR, ——| opt; IR, H IRy — opt; — IR,
I 144 FE
| oo | | __m]

S~ !
small incremental repairs

LLVM Source - LoopUnroll.cpp#L

if (DT) {
if (OuterL) {

// TODO: That potentially might be compile-time expensive. We should try
// to fix the loop-simplified form incrementally.
simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);

} else {

for (Loop *SubLoop : LoopsToSimplify)
simplifyLoop (SubLoop, DT, LI, SE, AC, PreserveLCSSA);

Canonical Form Loop Properties

Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Canonical Properties

Dedicated Preheader
enables easy + efficient instruction hoisting

Dedicated Exit Blocks
enables easy + efficient effect sinking

Unique Backedge + Latch
make destruction of loop unambiguous

Canonicalization

Canonicalization — Dedicate Preheaders

exits:
{d,g}

exits:

{a,d.f}

Construct loop nesting forest 10

Canonicalization — Dedicate Preheaders

exits:
{d,g}

o exits:
{a,d.f}

Dedicate preheader of outer (blue) loop 1

Canonicalization — Dedicate Exits

exits:
{d,g}

o exits:
{a,d.f}

Dedicate preheader of inner (red) loop 1

Canonicalization — Dedicate Exits

exits:
{d, g}

o exits:
{a,d.f}

Dedicate exit (block g) of outer (blue) loop 1

Canonicalization - Ensure Unique Latches

exits:
{d, g}

exits:

{607 dvf}

Dedicate exit (block a) of inner (red) loop 1

Canonicalization - Ensure Unique Latches

exits:
{d, g}

exits:

{607 dvf}

Make latch for outer (blue) loop unique 10

Edge Deletion

Algorithm Outline

(1) Remove edge from graph

1

Algorithm Outline

(1) Remove edge from graph

(2) Remove references to unreachable blocks and edges

1

Algorithm Outline

(1) Remove edge from graph
(2) Remove references to unreachable blocks and edges

(3) Eject extraneous blocks from loop where edge was removed

1

Example #1

Deleting Edge (j, h) - Incremental Repair

Initial graph 13

Deleting Edge (j, h) - Incremental Repair

Edge deleted 13

Deleting Edge (j, h) - Incremental Repair

Eject block j from inner (blue) loop 13

Deleting Edge (j, h) - Incremental Repair

Eject block i from inner (blue) loop 13

Deleting Edge (j, h) - Incremental Repair

Eject block j from middle (red) loop 13

Deleting Edge (j, h) - Incremental Repair

Place block ¢ on edge (i, () to dedicate exit E

Example #2

14

Deleting Edge (f, i) — Incremental Repair

Initial graph 15

Deleting Edge (f, i) — Incremental Repair

Edge deleted B

Deleting Edge (f, i) — Incremental Repair

Remove unreachable blocks from graph, loop nesting forest 15

exits:
0

.|V

=
[ge]
o
[)
o
m
i}
c
Q
£
Q
pudt
(&)
m
|
=
N—r
()}
o)
©
Ll
on
[
=
=
()
()

exits:

15

Remove destroyed middle (red) loop

=
[ge]
o
[)
o
T
i}
c
Q
£
Q
pudt
(&)
m
|
=
N—r
()}
o)
©
Ll
on
[
=
=
()
()

exits:

{e}

exits:

15

Eject block e (and its loop) from the outer (cyan) loop

=
[ge]
o
[)
o
m
i}
c
Q
£
Q
pudt
(&)
m
|
=
N—r
()}
o)
©
Ll
on
[
=
=
()
()

exits:

{d}

exits:

15

Eject block d from outer (cyan) loop

Deleting Edge (f, i) — Incremental Repair

() exits:
{c}
() exits:
0

1
1
-

(e} (=)

Eject block ¢ from outer (cyan) loop 15

Deleting Edge (f, i) — Incremental Repair

{EY — (=) o
o
é () ex(;ts:

1
1
-

(e} (=)

Eject block b from outer (cyan) loop 15

Additional Applications

Function Inlining

t
0
®

Function Inlining

exits:
0
o
® O
exits: exits:
{a} 0

Function Inlining

Function Inlining

exits:
{r'}
o @
exits: exits:
{aq'} 0

Evaluation

Methodology

(1) Construct Waddle IR from C++ source (through LLVM)
- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, < 10 loops (< depth of 4) per function

Methodology

(1) Construct Waddle IR from C++ source (through LLVM)

- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, < 10 loops (< depth of 4) per function

(2) Construct a stable order of edges

Methodology

(1) Construct Waddle IR from C++ source (through LLVM)

- 6 compilation units
- ~85 interesting functions per compilation unit
- ~21 blocks, ~30 edges, < 10 loops (< depth of 4) per function

(2) Construct a stable order of edges
(3) For each edge that has siblings remaining:

- Delete edge and reconstruct canonical form (baseline)
- Delete edge using procedure described here

90)
N recompute
75 | I repair

60 - L

45 -

runtime (ms)

30 =

15 =

0- L
BC BFS CC PR SSSP TC

90 :
N recompute
75 I repair

60 - L

45 - :

runtime (ms)

30 -

15 -

0- L
BC BFS CC PR SSSP TC

64.80 to 72.7% decrease in runtime

90 :
-recompute
75 I repair |
% 60
E
e 45|
€
2 30

15

BC BFS CC PR SSSP TC

64.80 to 72.7% decrease in runtime

Questions?

Bonus Slides

Subgraph Duplication (Loop Unswitching)

[switch revie si() sa()]

/N

19

Subgraph Duplication (Loop Unswitching)

0 [sw1tch unit cv — 59() o)] i [swﬂ:ch CV CV 51() Sg()] -

'\/'W?

__

19

Thank You!

	Optimization Pipeline Strategies
	Canonical Form Loop Properties
	Edge Deletion
	Additional Applications
	Evaluation
	Bonus Slides

