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Abstract
Charon is a service designed to increase the stability of a distributed
system by preventing the overcommitment of limited resources
during extreme load. The service monitors the access history of
resources and is used as a central authority which either grants
or rejects requests for resource acquisition and use. This paper
describes the architecture and feature set of Charon, as well as the
rationale behind design decisions.

1. Introduction
A cloud service’s resource utilization is a direct consequence of the
number of active users and the types of activites they perform. The
load placed on such resources can vary over time. For example,
there is a likely increase in the number of active users during
Internet Rush Hour, and expensive analytics computation or media
transcoding may be performed in batch.

There may also be sudden and unpredictable bursts in activity,
placing additional strain on resources. Such bursty behavior has
historically been a scalability problem, as is evident from the fol-
lowing:

• Twitter reached a one-second peak of 143,199 Tweets/second
on August 3, 2013 during an airing of the film Castle in the
Sky. This consitutes a 2,400% increase over the average in per-
second traffic [1].

• Michael Jackson’s English-language Wikipedia page saw an
unprecedented 5.9 million views in just 24 hours following his
death in 2009. Prominent celebrity deaths dominate the top 100
traffic events for Wikipedia, according to Andrew G. West [2].

If resource utilization exceeds the system capacity, the service
may suffer from increased latency, decreased throughput, or the
failure of part of the service or the service as a whole. Clients and
service providers participate in a Service Level Agreement (SLA),
a contract outlining system-related characteristics such as expected
service uptime and latency. For example, a service may guarantee
that 99.9% requests receive a response within 200 milliseconds,
given the peak client load does not exceed 500 requests per second.
In the context of an SLA, such failures are unaccpetable and may
have several consequences to revenue.

Autoscaling is a strategy to match provisioned resources with
the current usage of a service at any given time by automatically in-
creasing capacity to maintain performance during usage spikes, and
decreasing capacity during usage lulls to reduce costs. While scal-
ing of stateless tiers (e.g. webserver, load balancers, queue work-
ers) is trivial, scaling of tiers holding persistent data (e.g. relational
database) is more complex.

A database tier can be scaled horizontally by adding additional
read slaves, but provides little benefit for write-heavy workloads.
The provisioning of new a resource is not instantaneous, and in
some circumstances may not be fast enough to react to demand. If
the window of time between resource provisioning and resource

availability experiences extreme load, some resources may fail
under strain. Such failures tend to cascade and are likely to lead
to system-wide downtime.

Throttling is an orthogonal strategy which allows the use of
resources up to some soft limit, and then slow or reject subse-
quent requests for a period of time after this limit is reached. The
service monitors resource utilization so that when an application
and datacenter-dependent threshold is reached, subsequent requests
from one or more users or subsystems are slowed or rejected. The
remaining available resources can be partitioned appropriately, and
a system under heavy load can continue to function (at a possibly
degraded, but available, operational state).

Throttling can help to avoid overloading a particular subsystem
either permanently or temporarily while additional resources can
be provisioned. A common issue when dealing with distributed
system failovers is the inability to recover a system because nodes
are continuously failing-over under load. If a node fails due to high
load, additional burden is placed on the remaining remaining nodes,
create instability for an entire application tier. The following AWS
service disruption post-mortems describe this situation in practice.

• A brief network disruption impacted a portion of DynamoDB
servers. Normally, affected servers query for membership meta-
data after rediscovering the cluster before accpeting new re-
quests. Due to recent orthogonal changes, the time required for
this query neared then exceeded a retrieval timeout. Affected
servers would remain offline, re-querying the metadata service.
This placed additional strain on the service and began to af-
fect additional DynamoDB servers that were not affected by
the original network disruption [3].

• Amazon Elastic Block Store volume data is replicated across
nodes for durability and availability. If one node cannot com-
municate with the node to which it replicates, it must choose
another live node and re-mirror. Writes are blocked until repli-
cation completes. In two separate cases, a re-mirroring storm
occurred after a large portion of EBS servers were disconnected
from their replicas (due to a power failure [4] and a problem-
atic network upgrade [5]). The remaining nodes could not find
enough free space in which to replicate and were stuck blocking
writes until additional capacity could be made available.

In the following, we introduce Charon. Charon is a centralized
microservice which, according to a set of configured access rules
and a user’s resource access history, controls whether or not a user
is allowed to use a particular resource. This service is resource-
agnostic, and only monitors access to a resource by name, not by
meaning. Clients that communicate with a shared resource (e.g. a
database, a web API, a message queue, etc) register the use with
Charon, which will either grant or reject access to the resource. A
use may be immediate (e.g. database queries or web requests), or
may be long-lasting (e.g. provisioning a sandbox to run user code).

Charon expects cooperative behavior as clients must voluntarily
limit their own access. In a server-side limiting scheme, each re-



quest has already burnt network capacity and initial processing on
a request before it determined that the request is over-limit. Client-
side limiting prevents wasting time on such requests by first asking
permission from a limiting server before sending the request to a
shared resource, minimizing the cost of rejecting requests that are
already over-limit.

This system provides a central authority of resource permis-
sions. This enables resource limit configuration to be changed inde-
pendently from code deployment and distribution, and allows dis-
tinct services to limit based on a single access history.

We have set two hard goals in the design and implementation of
Charon, as follows.

1. The introduction of the Charon service to an infrastructure must
not introduce a new single point of failure. The design of an
appropriate Charon client must be able to make decisions au-
tonomously when separated from the service (which composes
the source of truth).

2. The response to a resource acquisition query must err on the
side of leniency. The service must not approximate the behav-
ior of clients in such a way that may lead to a request being
incorrectly denied.

The remainder of this paper is organized as follows. Section 2
describes how limits are configured for resources and discusses
common usage patterns. Section 3 presents the API of the limiting
server, and discusses additional features in the reference client.
Section 4 discusses architecture and implementation details and
section 5 discusses related work.

2. Resources
Charon tracks resources which fall into two distinct categories. A
resource can be tracked by access frequency, or can be tracked by
number of copies. Access to the former resource is rate limited,
and access to the later resource is guarded by acquiring a global
counting semaphore. A rate-limited resource is granted according
to uniform-cost hits, where the client may access to perform some
operation after a hit is successful. A copy-limited resource can be
held by a client for a variable amount of time. Such a resource is
reserved when an access is successful, and released when the client
has finished using the resource.

Access to a resource is requested by supplying the unique name
of the resource as well as a globally identifiable domain name. The
domain is most often a reference to the user or tenant for which the
resource is requested, but could easily refer to other entities in a
another context.

Each resource is identified by a globally unique name and are
associated with a set of configuration parameters which control the
rate and conditions of access to the resources. These parameters
depend on the limiting technique used for the resource and are
discussed in detail below. Resources also have a set of domain-
specific configurations, which are given higher precedence than the
default configuration - if a resource is requested for a domain and
a domain-specific configuration exists, that configuration is used in
the default configuration’s place.

2.1 Rate-Limited Resources
Each rate-limited resource is configured with a hard limit H , a
global limit G, and an ordered sequence of burst tier configura-
tions. The hard limit and global limit of a resource describes the
maximum number of requests that can be granted per second from
a single domain and across all domains, respectively. If a hard limit
or a global limit are not supplied for a resource, they are effectively
unbounded.

A resource may have n ≥ 0 burst tiers configurations (although
when n is zero, the resource is inaccessible). Burst tiers are one-
indexed (i = 1, 2, 3, . . . ). The ith burst tier configuration has the
parameters
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denoting the limit, the window span, the active time, the cooldown
time, and whether the tier is skippable, respectively. A domain-
specific configuration defines a distinct set of burst tier configu-
rations, which may vary in number.

A burst tier describes a specific subset of a domain’s access his-
tory for a resource, which is constrained according to the configu-
ration parameters defined above. Two domains accessing the same
resource will have distinct and non-overlapping access histories.
Burst tiers and their behaviors are described in detail below.

Window At any point in time, the burst tier at index i maintains a
sliding window which aligns on one end with the current time, and
captures the last Tw

i seconds of activity. The hits which occurred
beyond the bounds of this window can be forgotten, as they are
irrelevant to any access decision.

The limit Li denotes the maximum number of hits that can
fall within the burst tier’s window. If the current sliding window
already contains Li hits, no additional request can be fulfilled. As
the sliding window updates implicitly with time, the next request
can be granted only when

now > t+ Tw
i

where t is the time of the least recent request within the sliding
window.

State At any point in time, a burst tier is either inactive, in its
active period, or in its cooldown period. The first hit within an in-
active burst tier causes it to enter its active period. The burst tier
at index i will automically transition from its active period to its
cooldown period after T a

i seconds have elapsed, and will in turn
automatically transition back to its inactive period after an addi-
tional T c

i seconds have elapsed. These transitions are illustrated in
Figure 1.

inactivestart cooldown

active
hit

T a
i elapsed

T c
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Figure 1. State transition diagram for burst tier i.

Moving Through Tiers The current burst tier is the active burst
tier with the greatest index. There are circumstances which cause
no burst tier to be in the active state (recent inactivity, a particular
burst tier is in cooldown, or no burst tiers exist). In this case, we
consider the fake burst tier at index zero to be the current burst
tier. This fake burst tier has behaves as if it has the following
configuration.

L0 = 0, Tw
0 =∞, T a

0 =∞, T c
0 = 0, S0 = 0

The current burst tier may change with time through bursting
or fallback. Fallback occurs when the current burst tier at index i
transitions from its active period to its cooldown period. A lower
burst tier at index j < i which is still active automatically becomes
the new current burst tier. Notice that fallback does not require that
j = i−1, and the current burst tier may drop several levels at once.



When a sliding window of the current burst tier at index i is
at capacity, the next request may cause a burst into the next tier at
index i + 1. A burst cannot occur if there is no configured burst
tier at index i + 1, or if the burst tier at index i + 1 is currently in
its cooldown period and Si+1 = 0. If Si+1 = 1 and that tier is at
capacity, then a burst may occur to the tier at index i+2, i+3, and
so on, until a valid burst target is found. Bursting into this upper
tier will immediately begin its active period. A request while in
burst tier at index zero will always burst (when n 6= 0). Figure 2
illustrates an example of a successful burst and Figure 3 illustrates
an example of a burst failure caused by a cooldown period.

2.2 Copy-Limited Resources
Each copy-limited resource is configured with a domain limit and a
global limit. The domain limit of a resource describes the maximum
number of copies a domain can hold at a given time, independent
of other domains. A domain-specific configuration may redefine the
domain limit for a particular domain. The global limit of a resource
describes the maximum number of copies that can be held across
all domains at a given time. If a global limit is not supplied for a
resource, it is unbounded.

A resource may have n ≥ 0 group-specific configurations,
where each has a domain group (a set of domain names) and a
group limit. The group limit describes the maximum number of
copies that can be held by across all domains within that domain
group. If a domain belongs to more than one domain group, then
one copy of a resource is reserved for each group’s pool of re-
sources.

2.3 Cookbook and Patterns
We have found several useful resource configuration patterns, each
discussed below.

Penalties Access patterns may be naturally bursty for many types
of services. It is not necessarily a threat to infrastructure stability
for bursts to occur, as long as the bursts do not become permanent.
In order to accommodate short bursty access patterns, additional
burst tiers can be stacked where the limit increases proportionally
with the cooldown period. The higher a domain bursts for a single
resource, the more they can consume - but only for a short period of
time. After a period of indulgence, they are forced back down into
a lower tier and cannot burst again until the cooldown period of the
upper tiers have elapsed. This creates a small window in which a
client can receive heavy traffic, but is forced to maintain a more
even-paced pattern of access directly afterwards.

Punishment For other types of services, access patterns may
be naturally uniform, and bursty behavior may indicate abuse or
unstable clients. To mitigate bursty requests, a burst tier can be
configured to capture bursty-behavior domains. A burst can be
detected by either hitting a limit, or moving through an entire buffer
tier (which may be entered, but only slightly, on normal access
patterns). An upper prison tier can be configured with a limit of
one and a long active period. Once entered, no further requests can
be made by this domain for this resource, and the domain can only
leave this tier after the active time elapses.

Batch Processing Most commonly, the lowest burst tier will have
a zero-time cooldown period to prevent normal, non-abusive access
patterns from suffering an iterating hiccup. However, breaking this
convention can prove to be useful in certain circumstances. Sup-
pose access to a hosted API is used for bulk processing, but isn’t
used frequently throughout the day. A single burst tier with the fol-
lowing parameters will allow up to 5000 API requests within a 5
minute window (300 seconds), but disallow any further access for

the remaining 24 hours (86400 seconds).

L1 = 5000, Tw
1 = 300, T a

1 = 300, T c
1 = 86100, S1 = 0

Bulkheads A ship’s hull is divided into different watertight bulk-
heads so that if the hull is compromised, the failure is limited to
that bulkhead as opposed to taking the entire ship down. Copy-
limited resources can similarly be partitioned into several groups,
where each group is meant to be acquired by a symmetric domain
group. A problem (over-acquisition, in particular) in one group of
resources will not negatively affect other groups.

A group of high-volume clients could acquire resources from
a reserved set of copies, distinct from (or a subset of) the remain-
ing copies used by lower-volume clients. One this set of copies is
exhausted, high-volume clients are denied future requests, opposed
to acquiring all available copies of a resource. This egalitarian ap-
proach prevents high-volume clients from drowning out the oppor-
tunities of smaller clients to acquire the same resource. Unknown
clients can be placed initially into a probationary group with a non-
critical number of copies shared with other new clients. Once they
become trusted and their access patterns are better understood, they
can be removed from the domain group and their limiting behavior
changes immediately. A blacklist of domains can be given an arbi-
trarily low group limit, forbidding them access to particular (or all)
resources.

3. API
This section details the request-response API via which the client
communicates with the Charon service. Some additional features
provided by the reference client are discussed in Section 3.2. These
features demonstrate the utility of the API as low-level building
blocks, allowing more complex limiting patterns to be built on top
of the provided ‘basic’ functionality.

3.1 Server API
Clients communicate with the Charon service through a sequence
of request-response transactions over a persistent gRPC connec-
tion. A client will receive exactly one response for each request is-
sued (barring a network partition or a server crash). Each response
is calculated immediately. That is, no request acts asynchronously
and requires the client to ask or wait for supplemental data after the
server’s immediate response, and no response will cause the server
to retry automatically on a rejection (or failure). It is left to the
client to implement a retry mechanism in the event of a rejection.

Requests are, for the most part, designed to be stateless. A client
must supply as much context as necessary in order for the server
to understand the request in-full. However, for reasons elaborated
in Section 4.3.1, each server acts as the arbiter for a client’s hold
on a copy-limited resource and must maintain some in-memory
bookkeeping with respect to each client. As a consequence, client
sessions are sticky, and a client is bound to a single server for (at
a minimum) the lifetime of the resource they hold. Clients may
issue many independent requests using the same session, and are
encouraged to do so to minimize transport overhead.

In addition to the set of normal responses for each request, the
server may respond with one of two classes of error responses. A
server error response indicates an internal problem, most likely an
issue connecting to a dependent service. A client should not imme-
diately re-issue the request to the same server. A client error re-
sponse indicates a problem with the request itself. This can happen
for a variety of reasons, including:

1. The request message is not well-formed. This is a class of
syntax error which occurs when the server cannot extract the
necessary information from the request packet.
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Figure 2. Successful bursting.
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Figure 3. Burst blocked by cooldown.

2. The request refers to a resource, but the server is not aware of
any configuration for that resource.

3. The request refers to a resource, but the server is aware of
configuration which contradicts the request itself (requesting a
copy-limit a rate-limited resource, and contrariwise).

4. The request attempts to release a resource, but the client issuing
the request does not currently hold that resource.

The server API includes the following five low-level opera-
tions, each acting with respect to resource r on behalf of domain
d. Each operation is designed with simplicity and minimal latency
as top priorities. The request operation asks for a rate-limited re-
source. The reserve operation followed by an eventual symmet-
ric release operation denotes the hold of a copy-limited resource.
The transfer and seize operations allow transfer the resource
holds to another client.

request(r, d, copies, min copies)
The request operation is the only operation which applies to rate-
limited resources. The server will attempt to apply n hits to the
access log for resource r from domain d, where n is the maximum
allowable value in the range [min copies, copies] respecting the
configured hard limit, global limit, and the state of the current burst
tier for this domain and resource pair. If only n < min copies can
be allocated for this resource, the request will fail and the access
log will remain untouched.

As multiple hits can be logged at once, it is possible that a
single request may pass completely through an entire burst tier (or
multiple tiers, for very large bulk requests). If min copies exceeds
the hard limit of the resource, the request will always fail.

In general, min copies = copies = 1, but it may be appro-
priate to bulk-request a number of resource hits up-front and abort
if the minimum number of requests cannot be made. This opera-

tion acts atomically and cannot be emulated by multiple requests
as rate-limited access cannot be un-requested after a grant.

The server response payload contains n, the number of hits to
the resource granted to the domain, and the following context data.
On rejection, n = 0.

• The resource’s hard limit
• The resource’s global limit
• The domain’s active burst tier limit
• The number of hits within the last second by this domain
• The number of hits within the last second across all domains
• The number of hits in the domain’s active tier
• The index of the domain’s active tier
• Whether or not the request caused a burst
• Whether or not the request was limited by a hard limit
• Whether or not the request was limited by a global limit

reserve(r, d, copies, min copies)
The reserve operation (as well as all the following operations)
applies to copy-limited resources. Similarly to request, the server
will attempt to hold n copies of resource r from domain d, where n
is the maximum allowable value in the range [min copies, copies]
respecting the configured global, domain group, and domain limits.
If only n < min copies can be reserved, the request will fail.

In general, min copies = copies = 1, but it may be necessary
to act on several copies of a resource at once. This operation adds
atomic semantics to multiple calls to reserve. This operation
can be emulated with multiple requests, but unnecessary resource
access would be held for a period of time in the case of (eventual)
rejection.



The server response payload contains n, the number of copies
of the resource granted to the domain, and the following context
data. On rejection, n = 0.

• The resource’s domain limit
• The resource’s global limit
• The number of holds by this domain
• The number of holds across all domains
• For each domain group to which the domain currently belongs:

The group’s name

The group’s limit

The nubmer of holds across all domains in the group

The name of the groups will be necessary for subsequent release
and transfer operations, discussed below.

release(r, d, copies, groups)
Each successful reservation of a copy-limited resource should be
paired with a symmetric release operation following its use. The
request message contains the number of copies to be released as
well as the set of domain groups to which the domain belonged
at the time these copies of the resource were reserved. A single
resource and domain pair can affect the number of holds differing
sets domain groups, as a domain can be added or removed from
a domain group while it is actively holding resources. The domain
group must be supplied to the server in order to disambiguate which
set of resources should be released.

A release operation must be issued to the same server to
which the symmetric reserve operation was issued. It is an error
to attempt to release more copies than are reserved by the given
resource, domain, and domain group.

If a reservation does not have a symmetric release, then the re-
served copies of the resource are leaked and cannot be reserved by
another client. We show how the effect of this issue is mitigated in
Section 3.2 (due to neglect) and in Section 4.3.1 (due to exceptional
conditions).

While all copies of a resource must be eventually released, they
do not need to be released in bulk. A set of resources reserved in a
single request can be released over a number of requests, as long as
the the copies being released sum to the number of copies reserved.

The server will reply with an empty acknowledgement on suc-
cess. There is no normal failure condition for this request - any error
is a client error, or a fault of the server.

transfer(r, d, copies, groups, ttl)
A transfer operation is the first step in moving a subset of holds
from one client to another. A seize operation, discussed below, is
the second and final step in the transfer.

A transfer is useful if the use of a resource spans multiple
processes or machines, and an accurate tracking of the number
of resources in-use is required. This operation does not affect the
domain or group for which the hold applies - it simply allows the
hold to re-bound to another TCP connection, possibly to a TCP
connection on a separate instance of the Charon service.

A transfer operation is similar to a release operation, but
instead of the copies of the resource being moved back into a
free pool, they are moved into a transfer staging area. A unique
transfer id can identify this set of resources. If the resources are
not moved out of this staging area, they will be released implicitly
after ttl seconds have elapsed. Resources staged for transfer are
still implicitly held and cannot be reserved by any client, but can
no longer be explicitly released by the client.

The server response payload includes the unique transfer id
which identifies the set of resources in the staging area. As with the
release operation, there are no normal failure conditions for this
request.

seize(transfer id)
A seize operation allows a client to claim a set of resources from
a transfer staging area, identifiable by the given transfer id . The
server response payload will includes the following context data.

• The resource namespace
• The resource name
• The domain name
• The list of groups to which the domain currently belongs
• The number of copies seized

This context data is enough to reconstruct a client-side hold on
a resource indistinguishable from resources which were acquired
through a reserve command. Seized resources must be released
or transferred by the client at the end of its use.

will reply with a seized response which includes the name
of the resource, the number of copies, and the new domain which
holds the transferred resources, as well as the set of domain groups
to which the domain currently belongs.

It is an error to attempt to seize a transfer id which does
not exist or has expired (which happens when its ttl has already
elapsed). These error conditions may not be distinguishable in
practice.

3.2 Client API
The reference client, written for Python 2.7, is a thin abstraction
over the server API presented in Section 3.1 with the notable
exception of two usability features which are discussed in this
section.

The first feature is a mechanism which re-issues request and
reserve operations in the face of rejection. This mechanism obeys
a maximum wait time, max wait , which is supplied by the user. By
default, the maximum wait time has a value of zero, and requests
are not re-issued. The request is issued in a loop according to an
exponential backoff policy. After the ith failure, the client will issue
a sleep for

min(max wait − elapsed , jitter(2i))

seconds before attempting the request again, where elapsed is the
true time spent blocking, and jitter is a function which randomizes
a scalar value v uniformly within [v − v

4
, v + v

4
). Once the sleep

target dips below zero, the request is aborted and the last failure
issued is given back to the user. This policy, opposed to immediate
retries, heavily reduces the number of futile requests which are
unlikely to receive a grant, which become increasingly common
as load increases. From the user perspective, the call is blocking at
the server level. Use of a maximum waiting time is illustrated in
Figure 4.

1 # (blocks for at most 5 seconds)
2 res = client.request_rate(r, d, max_wait=5)
3

4 if res.success:
5 handle_api_call()
6 else:
7 raise OverLimitError()

Figure 4. Retry with maximum wait time.



The second feature is an implicit release of a resource after
executing the block of code which requires it. This feature uses
Python’s context managers, which will invoke a release com-
mand for the remaining resources which have not been released
explicitly by the user. The use of a copy-limited resource is illus-
trated in Figure 5.

This ensures that the user does not forget an explicit release,
and does not need to concern themselves with guarding the block
of code to capture exceptional exit conditions. However, a client
which faults (ending the process exceptionally) during this code
block may never perform the release. The circumstance of a fault-
ing client is discussed in further detail in Section 4.3.1.

1 with client.hold_copy(r, d, copies=10) as res:
2 if res.success:
3 step1() # has 10 copies
4 res.release(5) # release 5 copies
5 step2() # has 5 copies
6

7 # (remaining copies implicitly released here)

Figure 5. Implicitly releasing holds of resource.

Figure 6 illustrates a multi-process exchange of resource copies.
This example assumes the existence of a socket or another commu-
nication mechanism which can send and receive the transfer iden-
tifier from one process to another.

3.3 Client-Side Cookbook and Patterns
We have found several ways to compose server operations to make
expressive higher-level operations which have proved useful in
practice, each discussed below.

Multi-Resource Requests Although the server API only allows
for multiple copies of a resource to be requested atomically, we can
combine several requests on the client-side to pseudo-atomically
request copies of multiple resources (providing client-observable
atomicity). This pattern works well when requesting m resources
where at most one of the resources are rate-limited. Suppose at least
min and at most max copies of the resources R = {r1, . . . , rm}
must be reserved. The critical section can be entered only when
exactly the same number of copies are reserved for each resource
ri. Additionally, suppose that the request for these resources must
complete within max wait seconds.

First, request max copies of r1 with a max wait of max wait . If
successful, the response will contain n1, the number of copies of r1
which are now held (which is necessarily greater than min). Next,
request n1 copies of r2 with a max wait of max wait − elapsed ,
where elapsed is the time spent on the first request. If successful,
the response will contain n2, the number of copies of r2 which
are now held. Now, min ≤ n2 ≤ n1, but it may be the case
that n2 6= n1. In this case, we release n1 − n2 copies of r1
before continuing. We continue this pattern through rm, releasing
extra held copies along the way. If R contains a resource which is
rate-limited, it must be requested as the final step. Otherwise, the
resource has been over-allocated and cannot be released back to the
server.

Figure 7 demonstrates this pattern with a copy-limited resource
resc and a rate-limited resource resr .

4. Architecture and Implementation
The Charon service is split into two subsystems: the configura-
tion API and the limiting server. These subsystems are decoupled,
which allows them to scale independently. Each subsystem com-
municates through its public interface through a proxy. This allows
horizontal scaling to remain opaque to the user.

4.1 Configuration API
The configuration API is a simple HTTP API backed by a relational
database. This subsystem acts as the central authority for resource
configurations, which were discussed in Section 2.

The API allows the creation and mutation of resource configu-
rations, but happens to normalize the data before it is committed.
Normalization of resource configuration includes (but is not limited
to the following changes.

• Burst tiers with an active time of zero are removed.
• If the active period of a burst tier is smaller than that burst tier’s

window, the window can be shortened to the size of the active
period.

• If the active period is not a multiple of the burst tier’s window
span, the active period can be trimmed so that no partial win-
dows occur at the tail of the active period. If partial windows are
allowed at the tail of a burst tier with a cooldown of zero, this
presents a possibility for a user to go over-limit when crossing
into the second instance of the burst tier.

• If the limit of a copy-limited resource, including domain and
group overrides, exceeds the global limit, the effective limit is
lowered for that resource or override.

The configuration API is required by the limiting server, and is
accessible externally for clients which create and update the con-
figuration for infrastructure resources. Although the limiting server
communicates with the configuration API, it does not do so fre-
quently. Each limiting server maintains its own view of the resource
configurations in-memory and will periodically (or on-demand)
read the configuration API for changes in order to refresh their stale
view. The configuration API can send a delta with respect to the
limiting server’s current configuration view in order to minimize
the cost of updating internal structures.

Mutation of resource configurations are expected to happen
rather infrequently in practice. New resource configurations are
added at the speed of code deploys. Old resource configurations
are updated after discovering that a limit was set too high and users
were utilizing resources too frequently or holding too many copies
concurrently, or a limit was set too high and the Charon service was
responding with spurious rejections.

4.2 Limiting Server
The limiting server is a high-concurrency, low-latency TCP server
which implements the command interface discussed in Section 3.1.
When a client connected to the limiting server, a client session is
created. This session is bound to a particular limiting server for the
life of the client. Resource holds cannot outlive the session from
which they were created, unless they are explicitly transfered to
another client session.

Each limiting server has a set of soft dependencies on ser-
vices used for monitoring. Logstash is used for log aggregation
between multiple instances of limiting servers. Riemann is a high-
performance network event stream processor which is used for
monitoring. The details of each request (the target resource, do-
main, and the result of the request) are sent to Riemann for mon-
itoring. This data can be processed and analyzed in order to find
access pattern trends and to adjust resource configurations as nec-
essary.

Each limiting server has a hard dependency on Redis [6], an in-
memory data structure store, which is used as the shared memory
between limiting servers within a datacenter. Redis is implemented
as a key-value store, where keys are unique strings and values
are one of several data structures (e.g. string, number, set, sorted
set, hash). The data stored in Redis is authoratative, and limiting



1 # Process #1
2 client = Charon(port=54648)
3

4 with client.hold_copy(r, d, copies=15) as res:
5 if res.success:
6 step1() # has 15 copies
7 tid = res.transfer(10, ttl=30) # stage 10 copies
8 send(tid) # (to Process #2)
9 step2() # has 5 copies

1 # Process #2
2 client = Charon(port=54649)
3

4 tid = recv() # (from Process #1)
5 with client.seize_copy(tid) as res:
6 if res.success:
7 step3() # has 10 copies
8 res.release(5) # release 5 copies
9 step4() # has 5 copies

Figure 6. Transfer of resources from one client to another client in a different process, each connected to a difference instance of the Charon
service.

1 with client.hold_copy(rc, d, copies=n, max_wait=max_wait) as resc:
2 if resc.success:
3 n = resc.copies # Only request as many copies as we’ve been given
4 max_wait = max_wait - resc.waited # Only count time we already waited once in total
5 resr = client.request_rate(rr, d, copies=n, max_wait=max_wait)
6 if resr.success:
7 extra = resc.copies - resr.copies
8 if extra > 0:
9 resc.release(extra) # release extra copies

10 process(resr.copies) # process remaining copies

Figure 7. Requesting multiple types of resources pseudo-atomically.

servers query the store on each request to determine the current
state of the access and copy logs. Limiting servers do not act on
their own view or a snapshot of the access or copy logs, which could
quickly become stale.

Each request to the limiting server may perform several low-
level reads and writes to the access and copy log data structures
within Redis. Mutation of a data structure should only occur in
the case the limiting server responds with a success to the client.
This series of reads and writes are implemented as a module – a C-
library loaded dynamically into the Redis process. As Redis’s non-
networking code runs in a single thread, the module can service an
entire request atomically.

Other rate limiting systems using Redis as a data store must
be careful to order sequences of get and set operations such that the
classic race condition (read in process A, read in process B, write in
process A, write in process B) does not occur. This either requires
acquiring a lock around relevant keys (incurring additional lock and
unlock operations on each request) or ensure that all counter opera-
tions are incremented prior to the deciding read (which increments
a counter even on failed requests) [7, 8].

Access Log The access log is structured as a snapshot of the
burst tiers at the point of last access with respect to a resource and
domain. Each burst tier is represented by the timestamp of the most
recent entry time into the tier, as well as a set of successful hits
ordered by time. The entry time, current time, and the burst tier
configuration are enough to determine the current state (e.g. active,
inactive, cooldown) of the burst tier. Keys associated with a burst
tier whose cooldown period has already ended are removed from
the access log. On each access of a burst tier, elements falling
outside the current window are removed from the ordered set which
allows the size of the window to be implemented as a simple set-
cardinality operation.

Pruning hits from an ordered set takes time proportional to

O(log2(k) + r)

where k is the number of hits in the set and r is the number of
hits falling outside the current window. Notice that r ≤ k, and k is

bounded by the limit of the window. This operation is very efficient
in practice as r remains small with frequent pruning.

Querying the access log takes time proportional to

O(
n∑

i=1

log2(Li) + (log2(G) +G) +
n

max
i=1
{log2(Li) + Li})

where n is the number of burst tiers and G is the global limit of the
resource. The terms above come from, in order, (1) counting the
number of hits within the last second of each burst tier, (2) pruning
the global hit set, and (3) pruning the hit set of the domain’s active
tier. The linear term G amortizes with frequent requests for the
resource, and the linear term Li amortizes with frequent requests
for the resource from the same domain.

Copy Log The copy log is much simpler. Each resource has a
count associated with its global usage, its usage per domain group,
and its usage per domain. Each hold of a resource increases one or
more of these values (depending if a global limit is configured or if
the domain belongs to one or more domain groups), and a release
symmetrically decreases one or more of these counts.

Requesting, seizing, and releasing a resource takes time propor-
tional toO(g) where g is the number of domain groups to which the
domain belongs. A transfer/seize pair is a constant-time operation,
but an unsuccessful transfer acts identically to a release.

Limiting servers associate a hold set with each client session. A
hold set is a list of holds (number of resources) which were created
from this session indexed by resource, domain, and domain group.
Reserving a resource increments a count in the hold set, and releas-
ing a resource decrements a count in the hold set. This information
is redundant and is used to clean up after clients which have dis-
connected from their session while they are holding resources, as
discussed in Section 4.3.1.

Scaling If limiting servers is scaled horizontally, the resulting
cluster of limiting servers has an additional hard dependency on
ZooKeeper [9, 10] to coordinate the discovery of other nodes in
the cluster. While limiting servers do not need to communicate
directly, they do need to be alerted when a limiting server goes



offline (from either a network partition or a server crash). This
scenario is discussed in detail in Section 4.3.2.

4.3 Failures
The limiting server, and in particular the data model, has been
designed around the fact that every service, every dependency,
and every edge in the network graph will at some point inevitably
fail in a spectacular way and at an unexpected time [11, 12]. A
particular concern which arises in the face of failure applies to the
data consistency of the copy log. Particular failure circumstances
and their resolution are discussed in Section 4.3.1 and Section 4.3.2
below.

A group of resources (distinguished by a namespace prefix) can
be configured to ignore configured resources and to allow uncon-
figured resource access. These settings are orthogonal and can be
enabled or disabled independently. Ignoring configured resources
effectively disables limiting for a particular application. This can
be useful in practice if there is a limiting misconfiguration which is
not immediately resolvable (which is possible if the misconfigura-
tion is too large spanning multiple resoruces or domain overrides,
or if the misconfiguration is not immediately obvious).

If unconfigured resource access is enabled, then unknown re-
source configurations will behave as if they are configured with the
most permissive values possible (e.g. maximum value limits, no
cooldown, short window periods, and no global or hard limits). Re-
source accesses are still recorded. When an application introduces
a limit to a resource which was previously unlimited, it may be dif-
ficult to configure limits for the resource in a way that is neither too
restrictive nor too permissive. This feature can be used to log pro-
duction access data for a period of time to determine a reasonable
limit.

The clients are also designed with two degraded modes of oper-
ation. If the client cannot reach a limiting server, or if the limiting
server returns an (non-client) exceptional response, the client will
fail-open and begin operating in degraded mode. When this hap-
pens, the client will forcibly grant the request, but for the minimum
amount of copies or hits that will allow the process to continue suc-
cessfully. It is imperative that a client application can remain
operational, even if the limiting servers are completely removed
from the network topology.

The client also has a global kill switch that, when activated, will
transform rejections from the limiting server to grants. This mode
is used internally to strange behavior in limiting servers with live
traffic and production limit configuration, while allowing the client
to behave as if the limiting servers were behaving correctly.

4.3.1 Client Fault
A client may fail exceptionally without releasing its active holds.
This can happen if the client process or the thread actively holding
the resource encounters an exception and does not run the block
finalizer, or can happen if the client simply loses connection to the
limiting server.

If no action is taken in this circumstance, then the resources
held by that client are held permenantly by a client session which
no longer exists. These resources are effectively leaked and cannot
be re-reserved in the future by any other client.

When a limiting server loses connection to a client, either from
an explicit disconnect or a broken pipe, the client session is termi-
nated. The client’s hold set contains an in-memory list of all the
outstanding holds the client has yet to release. Upon termination,
the hold set is iterated, and each active hold is released as if it were
released explicitly by the client. The server performs one release
operation for each unique resource, domain, and domain group hold
(not for each held copy of the resource).

4.3.2 Limiting Server Faults
A limiting server may fail exceptionally, most likely due to a losing
access to one of its critical dependencies. When a limiting server
fails, each connected client is no longer attached to the limiting
cluster. This has the same effects as the client itself detaching from
the limiting server.

To prevent the leaking of resources held by every client of a
failed limiting server, the resources in the hold set of every con-
nected client must be released. Unfortunately, the hold set informa-
tion is no longer accessible, as it was stored in the memory of a
server that is no longer running.

In order for this information to persist after a crash, each server
maintains a redundant set of keys prefixed by the server’s unique
identifier in the copy log that specifies their contribution towards a
global count. A count and the server’s contribution are incremented
and decremented in unison, and any count in the copy log should
be the sum of each server’s contribution towards that count. Each
server also stores a set of raw keys to which they have contributed
a non-zero count.

As a concrete example, suppose server s1 has connecte clients
c1 and c2 representing domains d1 and d2, respectively, and server
s2 has a connected client c3 also representing domain d2. If c1
holds 4 copies of r, c2 holds 5 copies of r, and c3 holds 6 copies of
r, then the copy log would appear approximately as the following.
The same technique is performed for the domain group and global

r : d1 → 4

r : d2 → 11

s1 : r : d1 → 4

s1 : r : d2 → 5

s2 : r : d2 → 6

s1 → {r : d1, r : d2}
s2 → {r : d2}

counts for the same resource.
When a limiting server crashes, the leader of the limiting server

cluster is responsible for clean-up. The leader can find the server’s
set of raw-keys in the copy log. Each raw key is decremented by
the server’s contribution to that key. Then, all keys prefixed with
the server identifier can be deleted.

To continue the example above, if s1 crashes, then r : d1 is
decremented by the count stored in s1 : r : d1, and r : d2 is
decremented by the count stored in s1 : r : d2. Then, any key
starting with s1 is removed. This retains the 6 holds of r by d2,
and the copy log would appear approximately as the following. In
practice, keys with a zero count are pruned upon decrement (hence
the missing key r : d1).

r : d2 → 6

s2 : r : d2 → 6

s2 → {r : d2}

If the last limiting server of a cluster crashes, then there is
no leader which can be elected to clean up the copy log. This
case is problematic when additional limiting servers subsequently
connect to the same copy log containing now incorrect hold data.
If a limiting server is the only server connected to the cluster on
startup, the server begins by removing every key from the copy log
so that no possibly stale data persists from a previous generation of
limiting servers.



If a limiting server loses its heartbeat connection to ZooKeeper
for a long enough period that the ZooKeeper session expires, the
other limiting servers in the cluster will be informed that the server
is no longer reachable. In this case, it would be incorrect for the
server to remain operational, as its portion of the copy log has been
forcibly removed. The in-memory hold set and the copy log are no
longer properly synchronized, and subsequent release operations
can cause the number of held resources to go negative. If a limiting
server’s ZooKeeper session expires, then the server resigns, shut-
ting itself down immediately to prevent the copy log from being
damaged. If limiting servers scheduled by a cluster manager such
as Mesos or Kubernetes, then this case is generally observable as a
small, self-resolving hiccup.

5. Related Work
This section discusses a few similar systems which are either in-
production or available as open source.

5.1 Doorman
Doorman, open-sourced by members of the YouTube team in 2016,
is a similar co-operative rate limiting system that achieves eventual
stability despite a changing number of clients and dynamic load
and capacity [13]. In this system, clients contact a limiting server
to get a lease on the capacity of resource until a particular time
T , after which the lease expires. It is the client’s responsibility to
conform to the granted lease, and the client must renew its lease
with the limiting server before the current lease expires to continue
using the resource. The capacity and limits for a resource, which
are dependent on dynamic factors (e.g. the number of active clients,
current load, etc), are re-evaluated regularly by the system.

A limiting server partitions and distributes the total capacity
of a resource among clients while attempting to conform to the
following properties.

1. (No Over-Commitment) The combined capacity given to each
client does not exceed the total capacity of the resource.

2. (No Under-Commitment) All available requested capacity is
distributed - the limiting server does not leave capacity on the
table if there is a request for it.

3. (Equal Distribution) The available capacity is distributed fairly
between clients, dependent on a pluggable algorithm which
defines fair.

Each resource can be configured with a safe capacity which dic-
tates the behavior of clients when Doorman cannot be reached for a
lease. If this capacity is−1, then rate limiting is disabled. If this ca-
pacity is 0, then the use of the resource is forbidden. Otherwise, the
safe capacity is used as if it was the capacity returned by a limiting
server. While Doorman is active, a safe capacity can be calculated
dynamically and given to clients with each lease.

Distribution algorithms use the configured capacity of the re-
source, the client’s outstanding lease, and the requested capacity of
the clients to partition capacity among clients. In addition to con-
forming to the properties listed above, an algorithm never gives
capacity to a client exceeding their requested capacity. While other
algorithms are possible, the five following algorithms are provided.

None Gives each client its wanted share, does not limit. This
‘pseudo-algorithm’ acts as a no-op distribution algorithm and
may overcommit.

Learn Gives each client the capacity it claimed it had before.
This ‘pseudo-algorithm‘ is used when a new limiting server is
being brought online and does not have a consistent view of the
existing leases.

Static Gives each client a statically assigned capacity. This algo-
rithm overloads the definition of capacity to mean a per-client
maximum capacity rather than a global maximum capacity.

ProportionalShare Every client is given up to an equal share of
the available capacity. Any capacity left on the table by clients
requesting less than their equal share is distributed among the
remaining clients proportionally to their requested capacity. For
example, a resource with a capacity of 90 will distribute in the
following way. Each client gets one-third of the capacity, but
Client C leaves 20 shares on the table. These shares are divided
among the remianing clients such that Client A gets 78% ( 70

90
)

and Client B gets 22% ( 20
90

) of the remaining shares.

Client Requested Share Additional
A 100 30 15.6
B 50 30 4.4
C 10 10 0

This algorithm takes time proportional to the number of clients.

FairShare Every client is given up to an equal share of the avail-
able capacity. Any capacity left on the table by clients request-
ing less than their equal share is distributed equally among the
remaining clients in rounds so that as many clients as possible
get their requested capacity. For example, a resource with a ca-
pacity of 160 will distribute in the following way. Each client
gets one-fourth of the capacity, but Client D leaves 30 shares on
the table and the process is repeated for clients with outstand-
ing requested capacity. Clients A, B, and C each get one-third
of the remaining shares. This fulfills the requested capacity for
everyone except Client A, who gets the leftover shares.

Client Requested R1 R2 R3
A 100 40 10 5
B 50 40 10 0
C 45 40 5 0
D 10 10 0 0

This algorithm takes time quadratic to the number of clients
and may not be suitable for a resource with a large number of
distinct clients.

Doorman moves the responsibility of granting or rejecting in-
dividual operations to the client, as the limiting server monitors
only granted client capacities, not use of that capacity. This re-
quires that clients know or predict the capacity they will require
for the extent of a lease, which may be inaccurate. Clients must be
fitted with adaptive logic so that they are neither over-requesting or
under-requesting capacities, otherwise clients may waste capacity
that could be used by another client, or clients may be artificailly
limited.

Doorman likely produces less network chatter, as services only
need to communicate when a lease expires. Charon, on the other
hand, requires that each access of a resource is preceded by a
decision from a limiting server. As an optimization in this direction,
Charon allows multiple resources to be granted at one time (as
discussed in Section 3.1).

Clients in Doorman and Charon also ask for resource access
within fundamentally different roles. When Doorman grants a lease
to a client, it does so specifically for the service. When Charon
grants resource access to a client, it does so for a specific domain.
As a consequence, Charon is applicable for PaaS architectures
where resource usage from individual tenants or end-users are
logically distinct, where Doorman is not.



5.2 Ratelimit (Lyft)
Lyft uses a similar gRPC service written in Go for rate limiting
[14]. Clients request access to a resource for a domian and a
set of descriptors, which are a list of hierarchical entires used to
determine a final key held either in-memory or a Redis cache.

1 domain: messaging
2 descriptors:
3 - key: to_number
4 rate_limit:
5 unit: day
6 requests_per_unit: 100
7

8 - key: message_type
9 value: marketing

10 descriptors:
11 - key: to_number
12 rate_limit:
13 unit: day
14 requests_per_unit: 5

In the example configuration shown above, a domain messag-
ing is defined with two top-level descriptors. The first descrip-
tor with key to number has no value, so each unique value sup-
pied for this key will be applied under a unique limit. Thus,
(to number , 4145551234) and (to number , 4145551235) may
each generate 100 requests per day. The second descriptor with
key message type has a concrete value marketing which matches
only requests with the same concrete value. Thus, a request with
the descriptor list

(message type,marketing), (to number , 4145551234)

may only generate 5 requests per day (limited orthogonally to the
other descriptor lists).

This system of configuration appears to be quite powerful and
seems to generalize Charon’s ability to apply limits to a single
domain, to a group of domains, or globally. Extending Charon’s
configuration so that arbitrary request data may match a different
limit configuration is possible, but is not yet implemented.

Lyft integrates this system into their distributed service mesh
Envoy in two locations. First, the network level filter calls the
ratelimit service for every new connection on the proxy’s socket
listener. This allows limiting of the number of connections that
transit the socket listener. Second, the proxy calls the ratelimit
service for every new request on the listener. This allows limiting
on the application level where additional client data is known by
the proxy.

5.3 Cloud Bouncer
Yahoo integrated Cloud Bouncer, a largely decentralized rate lim-
iting solution, into their platform in 2014 [15]. The software can
be decomposed into two parts. The policy manager is a database-
backed API where users can register their applications and rate lim-
iting policies. Policies can be based on any attribute of a request,
including the distinction between authenticated or anonymous re-
quests, read or write requests, and the number of bytes uploaded.
The controller is a backgroud process which is ran on each node
where rate limiting is enabled. The controller periodically polls the
policy manager and caches the current policy state in memory –
the same process Charon has for limiting configurations. The con-
troller process makes a decision locally of whether or not to serve
the request without any external communication during the request.
Traffic information for each node is stored locally and communi-
cated to every other node in the cluster via the gossip protocol over
UDP. In order to reduce network chatter, controllers are optimized
to send only the last second of traffic data to the rest of the cluster.

5.4 Kong
Kong is a microservice API gateway and service mesh that provides
rate limiting of downstream (non-edge) APIs [8]. In order to reduce
the latency of each limited request, each gateway node makes
a local determination in-memory. Periodically, each node push
its actions since the last synchronization to a shared data store
and read the updated values. This has the effect of relaxing the
limiting condition so that a client can exceed the limit between node
synchronization cycles. Individual nodes may be inaccurate for a
period of time, but will eventually reconverge to a nearly-accurate
global view.

5.5 PoolCounter
MediaWiki uses a network daemon which provides mutex-like
functionality called PoolCounter [16], which was created to lessen
CPU wastage when may servers are required to compute the same
result in parallel. This class of problem is common in Wikipedia’s
case (coined the ‘Michael Jackson Problem’ [2]), where articles
with a sudden spike of popularity and frequent edits cause a large
number of servers to re-parse the same page in order to serve fresh
content.

A client opens a connection to PoolCounter, sends a lock ac-
quire command, does the work, send a lock release command,
and disconnects. When a lock is released, a process waiting in the
wait queue may be woken with an acquired lock. PoolCounter is
equipped with a limited wait queue length and a client that over-
flows the wait queue must perform a request-specific fallback com-
mand (e.g. serve a stale cache entry or display an error message).
Two notable lock acquire commnads are defined.

ACQ4ANY This is used to acquire a lock when the result of
this computation is transferrable across processes via a shared
cache. When a lock of this type is released, all waiting processes
are awoken (without an acquired lock) to read the new cache
entry.

ACQ4ME This is used to acquire a lock when sharing of a cache
entry is not applicable. When a lock of this type is released,
only one waiting process is awoken with an acquired lock in
order to keep the worker population at a constant maximum.

5.6 Smockron
Smockron is a distributed rate limiting service that inverts the
request/grant-or-reject framework discussed so far [17]. Smock-
ron is a leader-follower cluster which communicates to application
servers via ZeroMQ. The application server sends a metadata pay-
load to a limiting server for each incoming request, but does not
wait for a grant/reject acknowledgement from the limiting service.
Instead, when the limiting server detects (asynchronously) that a
client is using a resource too frequently, it sends a message to each
application server instructing them to deny the client for a period
of time.

This inversion of control is an interesting alternative with a
number of benefits. Most beneficial seems to be that the limiting
request/response cycle imposes no additional latency on client re-
quests as an initial determination can be made in-process and com-
munication with the limiting server can be done out-of-band. Addi-
tionally, the fail-open mindset can be applied with no cost as long
as the application server does not fault when failing to send request
metadata to the limiting server.
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